Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Задания для подготовки
1.  
i

Кор­ня­ми урав­не­ния  дробь: чис­ли­тель: де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x в квад­ра­те минус 18 x плюс 100 пра­вая круг­лая скоб­ка минус 2, зна­ме­на­тель: де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x в квад­ра­те плюс 18 x плюс 100 пра­вая круг­лая скоб­ка конец дроби =0 яв­ля­ют­ся?

1) −10
2) 10
3) −18
4) 9
5) 18
6) 0
2.  
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит сумма (x + y), где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 5 ко­рень из x плюс 2 ко­рень из y = 7,6 ко­рень из x минус 5 ко­рень из y = 1. конец си­сте­мы .

1) (4; 7)
2) (0; 3)
3) [−1; 1]
4) (2; 3)
5) [−3; 5]
6) [2; 5]
3.  
i

Ука­жи­те ин­тер­ва­лы, удо­вле­тво­ря­ю­щие не­ра­вен­ству: x в квад­ра­те минус |x| минус 6 боль­ше 0.

1)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 3; 6 пра­вая квад­рат­ная скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка
4.  
i

Дана си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни x умно­жить на 4 в сте­пе­ни y = 32, ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 2, конец си­сте­мы .

где (x; y) — ре­ше­ние дан­ной си­сте­мы. Сумма (x + y) при­над­ле­жит про­ме­жут­ку?

1)  левая круг­лая скоб­ка 5; 12 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 5; 7 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 0; 10 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1; 6 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка 0; 8 пра­вая круг­лая скоб­ка
5.  
i

Hай­ди­те ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x плюс y конец ар­гу­мен­та = 3, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 16 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2y минус x пра­вая круг­лая скоб­ка = 1. конец си­сте­мы .

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 25, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 25, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ; целая часть: 8, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 пра­вая круг­лая скоб­ка
6.  
i

Ука­жи­те де­ли­те­ли ре­ше­ний си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию x y плюс ло­га­рифм по ос­но­ва­нию y x=2,x в квад­ра­те плюс y = 42. конец си­сте­мы .

1) 8
2) 2
3) 3
4) 4
5) −5
6) 6
7.  
i

Ука­жи­те об­рат­ную функ­цию для функ­ции: y = 5 в сте­пе­ни левая круг­лая скоб­ка x плюс 4 пра­вая круг­лая скоб­ка минус 1.

1) y = ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 5
2) y = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 4
3) y = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 4
4) y = ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс 5
5) y = ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка плюс 5
6) y = ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 5
8.  
i

Hай­ди­те сумму и про­из­ве­де­ние кор­ней ир­ра­ци­о­наль­но­го урав­не­ния:  ко­рень из: на­ча­ло ар­гу­мен­та: 3x плюс 1 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: x минус 1 конец ар­гу­мен­та = 2.

1) 1
2) 2
3) 4
4) 6
5) 5
6) 7
9.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний x минус y = 4,xy = минус 3. конец си­сте­мы .

1) (−1; 3)
2) (1; −1)
3) (3; 1)
4) (1; 3)
5) (1; −3)
6) (3; −1)
10.  
i

Ре­ши­те си­сте­му не­ра­венств  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка мень­ше или равно 2,x в квад­ра­те минус 9 боль­ше или равно 0. конец си­сте­мы . Най­ди­те наи­боль­шее ре­ше­ние си­сте­мы не­ра­венств.

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 36 конец ар­гу­мен­та
2) нет пра­виль­но­го от­ве­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та
4) 7
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 7 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
11.  
i

Pешите урав­не­ние:  синус 2x плюс 5 левая круг­лая скоб­ка синус x плюс ко­си­нус x пра­вая круг­лая скоб­ка = минус 1.

1)  минус дробь: чис­ли­тель: 1 плюс 4 n, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
2)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: Пи n, зна­ме­на­тель: 2 конец дроби , n при­над­ле­жит Z
3)  дробь: чис­ли­тель: минус 1 плюс 4 n, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
4)  дробь: чис­ли­тель: 4 n плюс 1, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
5)  дробь: чис­ли­тель: 4 n минус 1, зна­ме­на­тель: 4 конец дроби Пи , n при­над­ле­жит Z
6)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n, n при­над­ле­жит Z
12.  
i

Pешите си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 2y = минус 4x плюс 6,y = 4x плюс 3. конец си­сте­мы .

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: 10 конец дроби ; минус дробь: чис­ли­тель: 19, зна­ме­на­тель: 10 конец дроби пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби ; минус дробь: чис­ли­тель: 38, зна­ме­на­тель: 5 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 0 ; 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 0,4 ; минус 3,8 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 4 ; минус 38 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус 0,4 ; 3,8 пра­вая круг­лая скоб­ка
13.  
i

Дана си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни x умно­жить на 4 в сте­пе­ни y = 32, ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 2, конец си­сте­мы .

где (x; y) — ре­ше­ние дан­ной си­сте­мы урав­не­ний. Сумма (x + y) при­над­ле­жит про­ме­жут­ку?

1) (0; 8)
2) (10; 24)
3) (5; 12)
4) (−1; 6)
5) (5; 7)
6) (0; 10)
14.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x умно­жить на y конец ар­гу­мен­та , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x минус y = 24, ко­рень из x плюс ко­рень из y = 6. конец си­сте­мы .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та
2) 5
3) 7
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 49 конец ар­гу­мен­та
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 5 в сте­пе­ни левая круг­лая скоб­ка 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка
6) 5
15.  
i

Мно­же­ство зна­че­ний функ­ции: y = 2 синус в квад­ра­те x минус 5.

1)  левая квад­рат­ная скоб­ка минус 3; 5 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус 3; 7 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 7; 3 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка минус 5; минус 3 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка минус 7; минус 3 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус 5; минус 3 пра­вая круг­лая скоб­ка
16.  
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит от­но­ше­ние  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 3 конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: y плюс 3 конец ар­гу­мен­та = 7,5 ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 3 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: y плюс 3 конец ар­гу­мен­та = 1. конец си­сте­мы .

1) (−3; 3)
2) (4; 7)
3) (2; 7)
4) (0; 3)
5) [−3; 5]
6) [−1; 1]
17.  
i

Кор­ня­ми урав­не­ния x в сте­пе­ни 4 плюс 6x в квад­ра­те минус 7 = 0 яв­ля­ют­ся?

1) 6
2) 7
3) −6
4) 1
5) −7
6) −1
18.  
i

Кор­ня­ми урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка плюс x левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка конец ар­гу­мен­та = 1 яв­ля­ют­ся

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) −2
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
6)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
19.  
i

Най­ди­те про­ме­жу­ток в ко­то­ром за­клю­че­на сумма  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 4 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка = 128,5 в сте­пе­ни левая круг­лая скоб­ка 3x минус 2y минус 3 пра­вая круг­лая скоб­ка = 1. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка минус 4 ; 4 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус целая часть: 3, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 2 ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 3 ; минус 0,5 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 0 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3,5 пра­вая квад­рат­ная скоб­ка
6)  левая круг­лая скоб­ка минус 3,5 ; 3,5 пра­вая круг­лая скоб­ка
20.  
i

Об­ласть опре­де­ле­ния функ­ции: y = 3 плюс ко­рень из: на­ча­ло ар­гу­мен­та: синус дробь: чис­ли­тель: x, зна­ме­на­тель: 4 конец дроби конец ар­гу­мен­та .

1)  левая квад­рат­ная скоб­ка Пи n ; Пи плюс Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка 8 Пи n ; 4 Пи плюс 8 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
3)  левая квад­рат­ная скоб­ка Пи n ; Пи плюс 2 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
4)  левая квад­рат­ная скоб­ка 8 Пи n ; 2 Пи плюс 4 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
5)  левая квад­рат­ная скоб­ка 4 Пи n ; Пи плюс 2 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
6)  левая квад­рат­ная скоб­ка 4 Пи n; 4 Пи плюс 8 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
21.  
i

Из ни­же­пе­ре­чис­лен­ных от­ве­тов ука­жи­те на­ту­раль­ные числа, удо­вле­тво­ря­ю­щие не­ра­вен­ству: x в квад­ра­те минус |x| минус 6 мень­ше 0.

1) 1
2) 3
3) 1
4) 2
5) 5
6) 0
22.  
i

Если x1 и x2 корни урав­не­ния 9x в квад­ра­те минус 13x плюс 4 = 0, то среди пред­ло­жен­ных чисел най­ди­те x_1 плюс x_2 и x_1 умно­жить на x_2.

1) 4
2) 1
3)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 9 конец дроби
5)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби
6) 12
23.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 2x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x плюс y = 1,6 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка минус y пра­вая круг­лая скоб­ка = 216. конец си­сте­мы .

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4) 4
5) 2
6) 3
24.  
i

Най­ди­те чис­ло­вой про­ме­жу­ток, в ко­то­ром рас­по­ло­же­но зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x умно­жить на y конец ар­гу­мен­та , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x = y, ко­рень из x плюс ко­рень из y = 6. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 81; 4 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 81 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 9 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 9; 9 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 81 пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка минус 9; умно­жить на 9 пра­вая квад­рат­ная скоб­ка
25.  
i

Ука­жи­те вы­ра­же­ния, зна­че­ния ко­то­рых равны корню урав­не­ния:  дробь: чис­ли­тель: 7 левая круг­лая скоб­ка a минус 6 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби = дробь: чис­ли­тель: 5 левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби минус 3 левая круг­лая скоб­ка a плюс 2 пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) −2
3) 4
4)  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
5)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 16 конец ар­гу­мен­та
6)  ко­рень из: на­ча­ло ар­гу­мен­та: 4 конец ар­гу­мен­та
26.  
i

Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка 5x минус 2y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x = y,2 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 6. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 0 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка 0; 5 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 3; 5 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 0; 1 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 6 пра­вая круг­лая скоб­ка
27.  
i

Какие из дан­ных чисел не яв­ля­ют­ся ре­ше­ни­я­ми не­ра­вен­ства 0,7x плюс 8 боль­ше 0,8x минус 1?

1) 88
2) −500
3) 90
4) 0
5) 500
6) 95
28.  
i

Какие из пе­ре­чис­лен­ных зна­че­ний вы­ра­же­ний x плюс y, x минус y и xy верны, если x и y яв­ля­ют­ся ре­ше­ни­ем си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 5 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка 3x пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = 3 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка 4y плюс 7 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка ,x плюс 2y = 4 конец си­сте­мы .

1) x y= минус 0,5
2) xy=1,5
3) x плюс y=2,5
4) x минус y= минус 3,5
5) x минус y=2,5
6) x плюс y=3,5
29.  
i

Кор­ня­ми урав­не­ния  де­ся­тич­ный ло­га­рифм x левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм x минус 3 пра­вая круг­лая скоб­ка = минус 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм 2 плюс де­ся­тич­ный ло­га­рифм 5 пра­вая круг­лая скоб­ка яв­ля­ют­ся?

1) 0
2) 100
3) 1
4) 20
5) 100
6) 10
30.  
i

Ука­жи­те ин­тер­ва­лы, удо­вле­тво­ря­ю­щие не­ра­вен­ству: |x в квад­ра­те минус 1| минус 3 боль­ше или равно 0.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
31.  
i

Най­ди­те сумму кор­ней ло­га­риф­ми­че­ско­го урав­не­ния 2 де­ся­тич­ный ло­га­рифм x минус де­ся­тич­ный ло­га­рифм 4 плюс де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка 5 минус x в квад­ра­те пра­вая круг­лая скоб­ка =0.

1) 4
2) 2
3) 3
4) −3
5) 7
6) 0
32.  
i

Кор­ня­ми урав­не­ния  дробь: чис­ли­тель: ко­си­нус x, зна­ме­на­тель: синус x конец дроби плюс 1=0 при x при­над­ле­жит левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби ;2 Пи пра­вая квад­рат­ная скоб­ка яв­ля­ют­ся?

1)  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 6 конец дроби
3) 2 Пи
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
6)  дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби
33.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 2 в сте­пе­ни x плюс 3 в сте­пе­ни y =7,3 умно­жить на 2 в сте­пе­ни x плюс 2 умно­жить на 3 в сте­пе­ни y =18. конец си­сте­мы .

1) 9 в сте­пе­ни д робь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 4 конец дроби
3) 3
4) 25 в сте­пе­ни д робь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5) 3 в сте­пе­ни 0
6)  дробь: чис­ли­тель: 25, зна­ме­на­тель: 5 конец дроби
34.  
i

Из ни­же­пе­ре­чис­лен­ных ин­тер­ва­лов ука­жи­те ин­тер­ва­лы удо­вле­тво­ря­ю­щие не­ра­вен­ству:  дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 3 конец дроби боль­ше или равно дробь: чис­ли­тель: x минус 3, зна­ме­на­тель: x плюс 2 конец дроби .

1)  левая квад­рат­ная скоб­ка минус 2; дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;2 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 2; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка
35.  
i

Из ни­же­пе­ре­чис­лен­ных пар чисел вы­бе­ри­те те, ко­то­рые яв­ля­ют­ся ре­ше­ни­ем си­сте­мы:  си­сте­ма вы­ра­же­ний тан­генс x плюс тан­генс y=2, тан­генс x минус тан­генс y=0. конец си­сте­мы .

1)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка
36.  
i

Ре­ши­те урав­не­ние f в сте­пе­ни prime левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = синус 2 x умно­жить на ко­си­нус 3 x плюс ко­си­нус 3 x умно­жить на синус 2 x.

1)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 10 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 10 конец дроби n : n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
2)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 10 конец дроби плюс дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 5 конец дроби n: n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
3)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 5 конец дроби n: n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
4)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 5 конец дроби n: n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
5)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 10 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 5 конец дроби n: n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
6)  левая фи­гур­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 5 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 10 конец дроби n: n при­над­ле­жит Z пра­вая фи­гур­ная скоб­ка
37.  
i

Из пред­ло­жен­ных ниже про­ме­жут­ков, ука­жи­те про­ме­жут­ки удо­вле­тво­ря­ю­щие ре­ше­нию не­ра­вен­ства  левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2x плюс 5 пра­вая круг­лая скоб­ка боль­ше или равно 0.

1)  левая квад­рат­ная скоб­ка 3 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 2 ; 3 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 2,5 ; минус 2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2,5 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка минус 2 ; 3 пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 9 конец ар­гу­мен­та ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
38.  
i

Из ни­же­пе­ре­чис­лен­ных пар чисел, вы­бе­ри­те те, ко­то­рые яв­ля­ют­ся ре­ше­ни­ем си­сте­мы урав­не­ний:

 си­сте­ма вы­ра­же­ний синус x плюс ко­си­нус y=1, синус x умно­жить на ко­си­нус y= дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби . конец си­сте­мы .

1)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
2)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
3)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
4)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
5)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
6)  левая фи­гур­ная скоб­ка левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка пра­вая фи­гур­ная скоб­ка
39.  
i

Кор­ня­ми урав­не­ния e в сте­пе­ни левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x в кубе минус 4x конец ар­гу­мен­та пра­вая круг­лая скоб­ка =1 яв­ля­ют­ся?

1) 2
2) −2
3) 0
4) 3
5) −1
6) 1
40.  
i

Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: x_n, зна­ме­на­тель: y_n конец дроби , где  левая круг­лая скоб­ка x_n;y_n пра­вая круг­лая скоб­ка  — ре­ше­ния си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка y= минус 5,x плюс y=12 . конец си­сте­мы .

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
2) 0,5
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
4) 0,25
5) 2
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
41.  
i

Пусть  левая круг­лая скоб­ка x_n ; y_n пра­вая круг­лая скоб­ка  — ре­ше­ния си­сте­мы урав­не­ний:

 си­сте­ма вы­ра­же­ний x в квад­ра­те плюс x y=15, y в квад­ра­те плюс x y=10. конец си­сте­мы .

Най­ди­те ли­ней­ную функ­цию уг­ло­вым ко­эф­фи­ци­ен­том, ко­то­рой яв­ля­ет­ся зна­че­ние вы­ра­же­ния x_1 умно­жить на x_2 плюс y_1 умно­жить на y_2.

1) y= минус 13 x
2) y= минус 3 плюс 13 x
3) y= минус 5 плюс 13 x
4) y=5 плюс 13 x
5) y=2 минус 13 x
6) y= минус 2 левая круг­лая скоб­ка 6,5 x плюс 2 пра­вая круг­лая скоб­ка
42.  
i

Функ­ция за­да­на фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = минус 5x в квад­ра­те плюс 3x. Най­ди­те f левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка и f левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка .

1)  минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 9 конец дроби
2)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 9 конец дроби
3) 26
4) 14
5) −14
6) −26
43.  
i

Кор­ня­ми урав­не­ния 2\absx плюс 5=9 яв­ля­ют­ся?

1) 2
2) 3
3) −4
4) −2
5) −1
6) 1
44.  
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит про­из­ве­де­ние x · y, где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та плюс 3 ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та =4,4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: y конец ар­гу­мен­та =3. конец си­сте­мы .

1) [1; 5]
2) (2; 7)
3) (4; 7)
4) (0; 3)
5) [2; 5]
6) [−3; 5]
45.  
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит про­из­ве­де­ние x · y, где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:

 си­сте­ма вы­ра­же­ний ло­га­рифм по ос­но­ва­нию 5 левая круг­лая скоб­ка x в квад­ра­те плюс y в квад­ра­те пра­вая круг­лая скоб­ка =2, ло­га­рифм по ос­но­ва­нию 2 x минус 2= ло­га­рифм по ос­но­ва­нию 2 3 минус ло­га­рифм по ос­но­ва­нию 2 y. конец си­сте­мы .

1) [3; 15]
2) (0; 13)
3) [−4; 1]
4) (2; 17)
5) [−4; 10]
6) [1; 5]
46.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x=y минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби , тан­генс x плюс 2\ctg y=1, конец си­сте­мы . если  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка при­над­ле­жит левая квад­рат­ная скоб­ка минус 2 Пи ;2 Пи пра­вая квад­рат­ная скоб­ка .

1)  минус Пи
2) 0°
3) 2 Пи
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
5)  Пи
6)  минус 2 Пи
47.  
i

Най­ди­те сумму кор­ней ир­ра­ци­о­наль­но­го урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус x конец ар­гу­мен­та = ко­рень из: на­ча­ло ар­гу­мен­та: 2 x минус 12 конец ар­гу­мен­та .

1) 17
2) 13
3) 8
4) 15
5) 9
6) 7
48.  
i

Най­ди­те сумму кор­ней урав­не­ния: 3 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка в квад­ра­те x минус 4 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 пра­вая круг­лая скоб­ка x плюс 1=0.

1) 30
2) −30
3) 2 плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
4) 5 минус ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
5) 3 плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
6) 3 минус ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
49.  
i

Най­ди­те про­из­ве­де­ние x · y, где (x, y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний де­ся­тич­ный ло­га­рифм x минус де­ся­тич­ный ло­га­рифм y=0, 2 x минус y=10. конец си­сте­мы .

1) 100
2) 20
3) 200
4) 102
5)  де­ся­тич­ный ло­га­рифм 100
6)  де­ся­тич­ный ло­га­рифм 1000
50.  
i

Из ниже пред­ло­жен­ных чисел ука­жи­те целые числа удо­вле­тво­ря­ю­щие не­ра­вен­ству 2|x| минус 5 боль­ше или равно 0.

1) 1
2) 3
3) −2
4) −3
5) 2
6) −1,5
51.  
i

Пусть (x; y) ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 2 в сте­пе­ни левая круг­лая скоб­ка x минус 3 y пра­вая круг­лая скоб­ка =16, 2 x плюс y =5. конец си­сте­мы . Най­ди­те зна­че­ния вы­ра­же­ний 49 умно­жить на x умно­жить на y и 7 левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка .

1) −37
2) −22
3) 57
4) −57
5) −16
6) 16
52.  
i

Кор­ня­ми урав­не­ния  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 в сте­пе­ни x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 в сте­пе­ни x плюс 1 пра­вая круг­лая скоб­ка = 0 яв­ля­ют­ся

1) −5
2) −1
3) 1
4) 3
5) −4
6) 0
53.  
i

Вы­бе­ри­те из ниже пред­ло­жен­ных от­ве­тов зна­че­ния вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (xn; yn) — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x плюс y плюс xy = 11,x плюс y плюс 1 = xy. конец си­сте­мы .

1) 4
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
5)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
6) −2
54.  
i

Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний де­ся­тич­ный ло­га­рифм левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = 2, де­ся­тич­ный ло­га­рифм x = де­ся­тич­ный ло­га­рифм 3 плюс де­ся­тич­ный ло­га­рифм y. конец си­сте­мы .

1) 3 в сте­пе­ни левая круг­лая скоб­ка 0 пра­вая круг­лая скоб­ка
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
4) 0,25
5) 2
6) 3
55.  
i

Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний 2x плюс y = 0,25 в сте­пе­ни x умно­жить на 2 в сте­пе­ни y = 0,4. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 2 ; 4 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка 0 ; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 3 ; 4 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка минус 3 ; 3 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус 4 ; 4 пра­вая круг­лая скоб­ка
56.  
i

Из пе­ре­чис­лен­ных ниже от­ве­тов, най­ди­те сумму кор­ней (или ко­рень, если он один) урав­не­ния  x в кубе умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка =0.

1) 30
2)  минус левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  минус 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
4) −1
5) 1
6) −3
57.  
i

Ре­ше­ни­ем не­ра­вен­ства 13x минус 15 мень­ше или равно 2x в квад­ра­те яв­ля­ет­ся про­ме­жу­ток?

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; 5 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
58.  
i

Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: y конец дроби пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x минус y = 4,3 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 27. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка минус 2 ; 2 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 3 ; 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 0,5 ; 2 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1 ; 2 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
59.  
i

Кор­ня­ми урав­не­ния  левая круг­лая скоб­ка x в квад­ра­те плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те минус 6 левая круг­лая скоб­ка x в квад­ра­те плюс 2 пра­вая круг­лая скоб­ка минус 7=0 яв­ля­ют­ся?

1) −1
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
4) 1
5) −3
6)  минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
60.  
i

Ре­ше­ни­ем не­ра­вен­ства 3x минус 2 левая круг­лая скоб­ка 4 плюс 5x пра­вая круг­лая скоб­ка боль­ше или равно 2 левая круг­лая скоб­ка 5 минус x пра­вая круг­лая скоб­ка яв­ля­ет­ся про­ме­жу­ток?

1)  левая квад­рат­ная скоб­ка минус 3,6 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3,6 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3,6 пра­вая квад­рат­ная скоб­ка
4) x мень­ше или равно 3,6
5)  левая квад­рат­ная скоб­ка 3,6 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6) x \geqslant минус 3,6
61.  
i

Най­ди­те сумму  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:

 си­сте­ма вы­ра­же­ний x в квад­ра­те минус 5y в квад­ра­те плюс 4=0, ло­га­рифм по ос­но­ва­нию 4 x минус ло­га­рифм по ос­но­ва­нию 4 y=0. конец си­сте­мы .

1) 0,5
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
3) 0,25
4) 2
5) 1
6)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
62.  
i

Ка­ко­му про­ме­жут­ку при­над­ле­жит сумма (x + y), где (x; y) — ре­ше­ние си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус y в квад­ра­те конец ар­гу­мен­та =2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ,x минус 4=y. конец си­сте­мы .

1) [2; 4]
2) [−1; 0)
3) (4; 5]
4) (2; 4)
5) (5; 10)
6) (1; 5)
63.  
i

Най­ди­те ко­ор­ди­на­ты точек пе­ре­се­че­ния гра­фи­ков функ­ций y=x в квад­ра­те минус 3x плюс 1 и y=x минус 2.

1) (1; −1)
2) (−1; −1)
3) (1; −1)
4) (3; 1)
5) (3; −1)
6) (−1; 5)
64.  
i

Ре­ши­те урав­не­ние:  синус в квад­ра­те x минус 3 синус x плюс 2=0, при x при­над­ле­жит левая квад­рат­ная скоб­ка 0 гра­ду­сов; 360 гра­ду­сов пра­вая квад­рат­ная скоб­ка .

1) 90°
2) 90°
3)  Пи
4) 270°
5) 2 Пи
6)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
65.  
i

Опре­де­ли­те, при каких зна­че­ни­ях ар­гу­мен­та зна­че­ние y= дробь: чис­ли­тель: 2, зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби равно 1.

1) 1
2) 3
3) −0,5
4) −2
5) 0,5
6) −1
66.  
i

Ре­ше­ни­ем не­ра­вен­ства  дробь: чис­ли­тель: x левая круг­лая скоб­ка 2 плюс x пра­вая круг­лая скоб­ка , зна­ме­на­тель: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка конец дроби боль­ше или равно 0 яв­ля­ют­ся про­ме­жут­ки?

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка
3) (0; 1)
4) [0; 1)
5)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
67.  
i

Трой­ки чисел из пред­ло­жен­ных удо­вле­тво­ря­ют урав­не­нию  левая круг­лая скоб­ка x в сте­пе­ни левая круг­лая скоб­ка y пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка z пра­вая круг­лая скоб­ка =64.

1) x = 2, y = 3, z = 3
2) x = 2, y = 1, z = 5
3) x = 2, y = 2, z = 3
4) x = 2, y = 4, z = 8
5) x = 8, y = 2, z = 1
6) x = 4, y = 1, z = 3
68.  
i

Мно­же­ство ре­ше­ний си­сте­мы не­ра­венств

 си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x в квад­ра­те минус x, зна­ме­на­тель: x плюс 1 конец дроби мень­ше 0, дробь: чис­ли­тель: x в квад­ра­те минус x, зна­ме­на­тель: x в квад­ра­те минус 9 конец дроби мень­ше 0, конец си­сте­мы .

при­над­ле­жит про­ме­жут­ку?

1) (−3; −1)
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 4 пра­вая круг­лая скоб­ка
3) (−2; 1)
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус 1; 1 пра­вая круг­лая скоб­ка
5) (1; 3)
6) (−5; 11)
69.  
i

Вы­бе­ри­те целые числа, яв­ля­ю­щи­е­ся ре­ше­ни­я­ми не­ра­вен­ства:  2 в сте­пе­ни левая круг­лая скоб­ка минус 2 x плюс 2 пра­вая круг­лая скоб­ка боль­ше или равно 2 в квад­ра­те .

1) −1
2) 5
3) 1
4) 0
5) 6
6) −5

Вы­бе­ри­те числа, яв­ля­ю­щи­е­ся ре­ше­ни­я­ми си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 17 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка боль­ше 189, ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше 0. конец си­сте­мы .

1) 2,3
2) 3,2
3) 2
4) 2,8
5) 2,1
6) 1,7
71.  
i

Най­ди­те про­из­ве­де­ние кор­ней по­ка­за­тель­но­го урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка минус 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка = 3 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 1 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те плюс 2 пра­вая круг­лая скоб­ка .

1) 0
2) −3
3) 3
4) 7
5) 1
6) −8
72.  
i

Ре­ши­те урав­не­ние 5 в сте­пе­ни левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка минус 5 в сте­пе­ни левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка = 16 умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка плюс 4. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит ре­ше­ние дан­но­го урав­не­ния.

1)  левая круг­лая скоб­ка минус 10; 0 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 0; 5 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 0,75; 7 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка 0; 5 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка минус 400; минус 10 пра­вая квад­рат­ная скоб­ка
73.  
i

Най­ди­те все корни урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 x минус 1 пра­вая круг­лая скоб­ка = 36.

1) 1
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3) 36
4) 6
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 36 конец дроби