Готово, можно копировать.
РЕШУ ЕНТ — математика
Задания Д13 A13. Задания реальной версии ЕНТ 2021 года на позиции 13

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 8 конец ар­гу­мен­та мень­ше 4, ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус 2x конец ар­гу­мен­та боль­ше или равно 3 конец си­сте­мы . и ука­жи­те ко­ли­че­ство целых ре­ше­ний си­сте­мы не­ра­венств.

1) 2
2) 1
3) 5
4) 3
5) 4
2.  
i

Cумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 9, а сумма квад­ра­тов чле­нов про­грес­сии 40,5. Най­ди­те зна­ме­на­тель дан­ной про­грес­сии.

1)  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
3) 2
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3.  
i

Cумма семи пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии 48; 24; ... равна?

1) 97,75
2) 95,25
3) 63,25
4) 94,50
5) 31,75
4.  
i

Hай­ди­те част­ное  дробь: чис­ли­тель: b_1, зна­ме­на­тель: q конец дроби для гео­мет­ри­че­ской про­грес­сии, у ко­то­рой сумма пер­во­го и тре­тье­го чле­нов равна 40, а сумма вто­ро­го и чет­вер­то­го равна 80.

1) 4
2) 6
3) 8
4) 12
5) 2
1) −9; −8; −7
2) −8; −7; −6; −5
3) −8; −7
4) −3; −2; −1
5) −8; −7; −6
6.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний синус 2x боль­ше 0, ко­си­нус 2x мень­ше или равно дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби плюс Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n; Пи плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
5)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка 2x минус 1 пра­вая круг­лая скоб­ка плюс 3 в сте­пе­ни левая круг­лая скоб­ка 2x минус 2 пра­вая круг­лая скоб­ка боль­ше 4,3x минус 10 мень­ше или равно 2. конец си­сте­мы .

1) (1; 2)
2) [0; 2]
3) [1; 2]
4) (1; 5]
5) (1; 4]
1)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .
2)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 9 конец си­сте­мы .
3)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 4, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .
4)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 9 конец си­сте­мы .
5)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .

Най­ди­те сумму  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка плюс 81 в сте­пе­ни x = 82,3y в квад­ра­те минус x = 2, конец си­сте­мы . при­чем y < 0.

1) 3
2) 1
3) 0
4) 2
5) 4
10.  
i

Про­из­вод­ная функ­ции y=3 x в квад­ра­те минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус дробь: чис­ли­тель: 32, зна­ме­на­тель: x конец дроби в точке x=4 равна

1) 25
2) 17
3) 49
4) 48
5) 50
11.  
i

Най­ди­те целые по­ло­жи­тель­ные ре­ше­ния си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний 1 минус 0,5x мень­ше 4 плюс x,9 минус 2,8x боль­ше или равно 6 минус 1,3x. конец си­сте­мы .

1) 0; 1; 2
2) 1; 2; 3; 4
3) 0; 1; 2; 3
4) 1; 2
5) 1; 2; 3
12.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 6x плюс 12 конец ар­гу­мен­та мень­ше 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , ко­рень из: на­ча­ло ар­гу­мен­та: минус 3x плюс 5 конец ар­гу­мен­та боль­ше или равно 5. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус целая часть: 6, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 пра­вая квад­рат­ная скоб­ка
3) \varnothing
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус целая часть: 6, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 ; целая часть: 1, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 пра­вая круг­лая скоб­ка
13.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 4 в сте­пе­ни x минус 6 умно­жить на 2 в сте­пе­ни x плюс 8 мень­ше или равно 0,2x минус 3 боль­ше 0. конец си­сте­мы .

1) (1; 2)
2) (1,5; 2]
3) [1,5; 2]
4) [1; 2]
5) (1; 1,5]
14.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний ко­рень из: на­ча­ло ар­гу­мен­та: 6 x плюс 12 конец ар­гу­мен­та мень­ше 12, минус 3 x плюс 5 боль­ше или равно 8. конец си­сте­мы .

1) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка
2) x при­над­ле­жит левая квад­рат­ная скоб­ка минус 2; минус 1 пра­вая квад­рат­ная скоб­ка
3)  x при­над­ле­жит левая круг­лая скоб­ка 1; 22 пра­вая квад­рат­ная скоб­ка
4) x при­над­ле­жит \emptyset
5)  x при­над­ле­жит левая квад­рат­ная скоб­ка минус 2; 22 пра­вая круг­лая скоб­ка
1) −2
2) −1
3) 1
4) 2
5) 0
16.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке x=x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3 x в квад­ра­те минус 7 x плюс 4 и  x_0= минус 1.

1) y=7 плюс 12 x
2) y=1 минус 13 x
3) y=5 x минус 11
4) y=7 x плюс 4
5) y=x минус 4
17.  
i

Вы­чис­ли­те  при­над­ле­жит t_0 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ко­си­нус левая круг­лая скоб­ка 2 x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка d x.

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
4)  минус дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
5)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
18.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 синус 2 x плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та боль­ше или равно 0 \text, 2 ко­си­нус 2 x минус 1 мень­ше или равно 0 . конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
2)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 8 конец дроби плюс Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
3)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 8 конец дроби плюс Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 4 конец дроби плюс 2 Пи n пра­вая круг­лая скоб­ка , n при­над­ле­жит Z
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи n ; дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 8 конец дроби плюс Пи n пра­вая квад­рат­ная скоб­ка , n при­над­ле­жит Z
19.  
i

Сумма бес­ко­неч­но убы­ва­ю­щей про­грес­сии равна 32, а сумма ее пер­вых че­ты­рех чле­нов 30. Чему равен пер­вый член дан­ной про­грес­сии?

1) 8
2) 12
3) 15
4) 16
5) 9
20.  
i

Най­ди­те зна­ме­на­тель гео­мет­ри­че­ской про­грес­сии (bn), если b_19 минус b_17=1800, а b_18 минус b_16=600.

1) q= дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
2) q= дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
3) q=3
4) q=6
5) q= дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби
21.  
i

Най­ди­те ко­рень урав­не­ния  синус 3 x плюс ко­си­нус 3 x= ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , ко­то­рый при­над­ле­жит чис­ло­во­му ин­тер­ва­лу (90°; 180°).

1) 135°
2) 255°
3) 175°
4) 190°
5) 215°
22.  
i

Про­из­вод­ная функ­ции y=3 x в квад­ра­те минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус дробь: чис­ли­тель: 32, зна­ме­на­тель: x конец дроби в точке x=4 равна

1) 25
2) 17
3) 49
4) 48
23.  
i

На­пи­ши­те урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке x=x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3 x в квад­ра­те минус 7 x плюс 4 и  x_0= минус 1.

1) y=7 плюс 12 x
2) y=1 минус 13 x
3) y=5 x минус 11
4) y=7 x плюс 4