Заголовок: Демонстрационная версия ЕНТ−2023 по математике. Вариант 3.
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 97

Демонстрационная версия ЕНТ−2023 по математике. Вариант 3.

1.  
i

Hай­ди­те наи­боль­ший общий де­ли­тель чисел 60 и 75

1) 15
2) 20
3) 3
4) 5
2.  
i

Вы­пол­ни­те дей­ствие  левая круг­лая скоб­ка 2 плюс 3i пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 1 минус i пра­вая круг­лая скоб­ка и опре­де­ли­те дей­стви­тель­ную часть числа

1) −i
2) 5
3) −5
4) i
3.  
i

По дан­ным чис­лам a и b на чис­ло­вой пря­мой опре­де­лить вер­ное вы­ра­же­ние

1) |a| мень­ше |b|
2) |a| боль­ше |b|
3) |a минус b| боль­ше 0
4) |a| = |b|

Kолесо ма­ши­ны за 2 с де­ла­ет 6 обо­ро­тов. На сколь­ко гра­ду­сов по­вер­нет­ся шип на ко­ле­се за 10 с?

1) 10800°
2) 108°
3) 1080°
4) 180°
5.  
i

Ука­жи­те вер­ное раз­ло­же­ние на мно­жи­те­ли мно­го­чле­на ab минус a в квад­ра­те плюс 2a минус 2b

1)  левая круг­лая скоб­ка a плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка b минус a пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка b минус a пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка a плюс 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
6.  
i

Pешите урав­не­ние \left|x минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби | = целая часть: 7, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3 и най­ди­те сумму его кор­ней

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
2)  минус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
3)  целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
4)  целая часть: 7, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
7.  
i

Ре­ши­те си­сте­му урав­не­ний  си­сте­ма вы­ра­же­ний 3x минус 2y = 4,5x плюс 2y = 20 конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 3; минус 2,5 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 2,5; 3 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 3; 2,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; минус 2,5 пра­вая круг­лая скоб­ка
8.  
i

Вы­чис­ли­те: \lim\limits_x \to минус 2 дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x в квад­ра­те минус 4 конец дроби

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
2) 4
3) −4
4)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
9.  
i

Чему равен угол \angle KON = альфа , если из­вест­но, что угол \angle KMN = 65 гра­ду­сов.

1) 115°
2) 65°
3) 110°
4) 130°
10.  
i

Ящик в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да имеет квад­рат­ное дно. Вы­со­та ящика 80 см. Диа­го­наль бо­ко­вой грани равна 1 м, тогда сто­ро­на ос­но­ва­ния ящика равна

1) 0,5 м
2) 0,4 м
3) 0,45 м
4) 0,6 м
11.  
i

Ре­ши­те урав­не­ние:  ко­си­нус 5x плюс ко­си­нус 3x = 0

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби плюс 2 Пи n; Пи плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
4) \pm дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби плюс 2 Пи n; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби плюс 2 Пи k; n при­над­ле­жит Z ; k при­над­ле­жит Z .
12.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2x минус 5 мень­ше 4 минус x,7x минус 1 боль­ше или равно 9 плюс 12x конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка 1; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 2; 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Най­ди­те об­ласть опре­де­ле­ний функ­ции: f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус 3x конец ар­гу­мен­та , зна­ме­на­тель: x плюс 2 конец дроби .

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка минус 2; дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка минус 7; 2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 2; 4 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая круг­лая скоб­ка 4; 7 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 6 пра­вая квад­рат­ная скоб­ка
14.  
i

Hай­ди­те ве­ро­ят­ность того, что при бро­са­нии двух иг­раль­ных ко­стей сумма очков на верх­них гра­нях будет равна 5.

1)  дробь: чис­ли­тель: 29, зна­ме­на­тель: 36 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
15.  
i

Со­ставь­те урав­не­ние окруж­но­сти с цен­тром в точке O (3; 4), если точка A (6; 8) лежит на окруж­но­сти

1)  левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те минус левая круг­лая скоб­ка y минус 8 пра­вая круг­лая скоб­ка в квад­ра­те = ко­рень из 5
2)  левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 4 пра­вая круг­лая скоб­ка в квад­ра­те = 5
3)  левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 8 пра­вая круг­лая скоб­ка в квад­ра­те = ко­рень из 5
4)  левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 4 пра­вая круг­лая скоб­ка в квад­ра­те = 25
16.  
i

Плос­кость за­да­на урав­не­ни­ем 3x плюс 2y минус z плюс 6 = 0. Рас­сто­я­ние от точки D (−1; 3; 2) до плос­ко­сти равно

1)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: ко­рень из 7 , зна­ме­на­тель: 4 конец дроби
17.  
i

Ре­ши­те урав­не­ние:  ко­рень из: на­ча­ло ар­гу­мен­та: 2 минус ло­га­рифм по ос­но­ва­нию 2 x конец ар­гу­мен­та = ло­га­рифм по ос­но­ва­нию 2 x.

1) 2
2) 4
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
18.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка ко­рень x минус 1 пра­вая квад­рат­ная скоб­ка 7 пра­вая круг­лая скоб­ка в квад­ра­те минус ко­рень из левая квад­рат­ная скоб­ка y минус 1 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 343 конец ар­гу­мен­та = 0,3 в сте­пе­ни y = левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка y минус 2x пра­вая круг­лая скоб­ка конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 1; дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
2) (3; 4)
3) (1; −2)
4)  левая круг­лая скоб­ка 3; дробь: чис­ли­тель: ко­рень из 7 , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка
19.  
i

Най­ди­те сумму целых ре­ше­ний си­сте­мы не­ра­венств:  си­сте­ма вы­ра­же­ний ко­си­нус Пи умно­жить на x в квад­ра­те плюс 2x плюс 3 боль­ше или равно 0,x минус 2 мень­ше 0 конец си­сте­мы .

1) 6
2) 0
3) 2
4) −6
20.  
i

Ци­линдр с ра­ди­у­сом ос­но­ва­ния R = 2 ко­рень из 3 см впи­сан в пра­виль­ную тре­уголь­ную приз­му. Най­ди­те пло­щадь одной бо­ко­вой грани приз­мы, если вы­со­та ци­лин­дра 7 см.

1) 85 см2
2) 80 см2
3) 84 см2
4) 90 см2
21.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Най­ди­те пло­щадь по­верх­но­сти всех «угол­ков»

1)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби см2
2)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 4 конец дроби см2
3)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 8 конец дроби см2
4) 27 ко­рень из 3 см2
22.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Hай­ди­те пло­щадь по­верх­но­сти од­но­го «ребра»

1)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 8 конец дроби см2
2)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 4 конец дроби см2
3)  дробь: чис­ли­тель: 9 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби см2
4)  дробь: чис­ли­тель: 27 ко­рень из 3 , зна­ме­на­тель: 2 конец дроби см2
23.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Под каким углом синяя грань Пи­ра­мид­ки на­кло­не­на к жел­той грани?

1)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3)  арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
4)  арк­ко­си­нус дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
24.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Kакой вы­со­ты долж­на быть упа­ков­ка для Пи­ра­мид­ки?

1) 3 ко­рень из 3 см
2) 5 ко­рень из 6 см
3) 3 ко­рень из 2 см
4) 3 ко­рень из 6 см
25.  
i

Пи­ра­мид­ка — это вто­рая по по­пу­ляр­но­сти ме­ха­ни­че­ская го­ло­во­лом­ка в мире. Она имеет вид тет­ра­эд­ра, у ко­то­ро­го грани раз­де­ле­ны на 9 рав­но­сто­рон­них тре­уголь­ни­ков со сто­ро­ной 3 см. Все грани Пи­ра­мид­ки раз­но­го цвета. Меф­ферт изоб­рел Пи­ра­мид­ку в 1971 г — почти на 10 лет рань­ше, чем Эрно Рубик при­ду­мал свой зна­ме­ни­тый кубик. Но толь­ко после успе­ха ку­би­ка Ру­би­ка Меф­ферт решил за­па­тен­то­вать свое изоб­ре­те­ние. Эле­мен­ты пи­ра­мид­ки Меф­фер­та: А — «угол­ки» (имеют 3 цвет­ные грани), В — «ребра» (имеют 2 цвет­ные грани), С — «ра­ди­а­то­ры» (имеют 1 цвет­ную грань).

A

B

C

Из­го­то­ви­тель вы­брал упа­ков­ку для Пи­ра­мид­ки в виде сферы. Каким дол­жен быть диа­метр упа­ков­ки?

1)  дробь: чис­ли­тель: 3 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
2)  дробь: чис­ли­тель: 2 ко­рень из 6 , зна­ме­на­тель: 3 конец дроби см
3)  дробь: чис­ли­тель: 5 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
4)  дробь: чис­ли­тель: 9 ко­рень из 6 , зна­ме­на­тель: 2 конец дроби см
26.  
i

Kоли­че­ство де­ли­те­лей числа 24 равно

1) 22
2) 4
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 64 конец ар­гу­мен­та
4) 8
5) 12
6) 23
27.  
i

Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние вы­ра­же­ния

 синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка Пи минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс тан­генс левая круг­лая скоб­ка Пи плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс тан­генс левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка 0,75; 7 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка 100; 1000 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 0,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка минус 150; 0 пра­вая круг­лая скоб­ка
28.  
i

Упро­сти­те вы­ра­же­ние (−x6y2)2 − 66x12y4 + 4(−2x3y)4 и най­ди­те его зна­че­ние при x  =  −1, y  =  2. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние дан­но­го вы­ра­же­ния.

1)  левая квад­рат­ная скоб­ка минус 150; 0 пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 8; 0 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 400; минус 10 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 10; 0 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
29.  
i

Най­ди­те общее ре­ше­ние диф­фе­рен­ци­аль­но­го урав­не­ния: y в сте­пе­ни левая круг­лая скоб­ка \prime \prime пра­вая круг­лая скоб­ка плюс 8y в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка плюс 16y = 0.

1) y = e в сте­пе­ни левая круг­лая скоб­ка минус 4x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка C_1 плюс xC_2 пра­вая круг­лая скоб­ка
2) y = e в сте­пе­ни левая круг­лая скоб­ка минус 4x пра­вая круг­лая скоб­ка C_1 плюс xe в сте­пе­ни левая круг­лая скоб­ка минус 4x пра­вая круг­лая скоб­ка C_2
3) y = e в сте­пе­ни левая круг­лая скоб­ка 4x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка C_1 плюс C_2 пра­вая круг­лая скоб­ка
4) y = 4x левая круг­лая скоб­ка C_1 плюс xC_2 пра­вая круг­лая скоб­ка
5) y = e в сте­пе­ни x левая круг­лая скоб­ка C_1 плюс xC_2 пра­вая круг­лая скоб­ка
6) y = e в сте­пе­ни левая круг­лая скоб­ка минус 4x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка C_1 плюс C_2 пра­вая круг­лая скоб­ка
30.  
i

Най­ди­те x и y, если из­вест­но, что век­то­ры \vecc = левая круг­лая скоб­ка минус 2; y; минус 1 пра­вая круг­лая скоб­ка и \vecd = левая круг­лая скоб­ка 4; 5; x пра­вая круг­лая скоб­ка кол­ли­не­ар­ны. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дят со­от­вет­ству­ю­щие зна­че­ния x и y од­но­вре­мен­но.

1)  левая круг­лая скоб­ка 5; 6,5 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка 1; 5,75 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 2,5; 7 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка минус 5; 2,5 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 6; 2,25 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус 3; 2 пра­вая квад­рат­ная скоб­ка
31.  
i

За­пи­ши­те число  дробь: чис­ли­тель: 5i, зна­ме­на­тель: 6 минус 2i конец дроби в виде: (x + iy)

1) -0,25 + 0,75i
2)  минус дробь: чис­ли­тель: 5 плюс 15i, зна­ме­на­тель: 16 конец дроби
3)  минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 16 конец дроби плюс дробь: чис­ли­тель: 15, зна­ме­на­тель: 16 конец дроби i
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби i
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби плюс дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби i
6)  дробь: чис­ли­тель: минус 1 плюс 3i, зна­ме­на­тель: 4 конец дроби
32.  
i

Най­ди­те все корни урав­не­ния: x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 6 x минус 1 пра­вая круг­лая скоб­ка = 36.

1) 1
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3) 36
4) 6
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 36 конец дроби
33.  
i

Дан еди­нич­ный куб ABCDA1B1C1D1 . Най­ди­те угол между пря­мой AB1 и пря­мой BC1.

1)  дробь: чис­ли­тель: 180 гра­ду­сов , зна­ме­на­тель: 3 конец дроби
2) 60°
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
5) 90°
6) 30°
34.  
i

Даны три числа, об­ра­зу­ю­щие гео­мет­ри­че­скую про­грес­сию. Если от пер­во­го числа вы­честь 12, то эти числа об­ра­зу­ют ариф­ме­ти­чеcкую про­грес­сию, ко­то­рые в сумме равны боль­ше­му члену гео­мет­ри­че­ской про­грес­сии. Най­ди­те эти числа и вы­бе­ри­те из пред­ло­жен­ных ва­ри­ан­тов числа, со­от­вет­ству­ю­щие гео­мет­ри­че­ской или ариф­ме­ти­чеcкой про­грес­си­ям

1) 18; 10; 2
2) 13; 5; 1
3) 32; 8; 2
4) 27; 9; 3
5) 15; 9; 3
6) 37; 18,5; 9,25
35.  
i

Tре­уголь­ник АВС впи­сан в окруж­ность с цен­тром О. Сто­ро­на АВ равна 12, угол С равен 60°. Из пе­ре­чис­лен­ных ниже от­ве­тов вы­бе­ри­те те, ко­то­рые равны длине дан­ной окруж­но­сти.

1) 8 ко­рень из 3 Пи
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ко­рень из 3 Пи
3) 8π
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ко­рень из 3 Пи
5) 4 ко­рень из 3 Пи
6) 2 ко­рень из 3 Пи