Заголовок: Реальная версия ЕНТ по математике 2021 года. Вариант 4120
Комментарий:
Готово, можно копировать.
РЕШУ ЕНТ — математика
Вариант № 2

Реальная версия ЕНТ по математике 2021 года. Вариант 4120

1) 0,56
2) 0,78
3) −0,56
4) −0,78
5) 0,44
1) 4 и −4
2) 3 и −3
3)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и  минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби и  минус дробь: чис­ли­тель: 9, зна­ме­на­тель: 16 конец дроби
5) 3 и −3
1) (14; 5)
2) (0; 18)
3) (5; 9)
4) (−15; −11)
5) (9; 15)

То­карь, делая по 54 де­та­ли в час, из­го­то­вил все де­та­ли за 5 часов. За сколь­ко часов то­карь из­го­то­вит все де­та­ли, если будет де­лать по 15 де­та­лей в час?

1) 15 ч
2) 18 ч
3) 9 ч
4) 16 ч
5) 12 ч
1)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 2; 1 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 2; минус 1 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
1) (3; 1)
2) (4; 3)
3) (2; 5)
4) (2; 4)
5) (3; 4)
1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка
1) 212
2) 126
3) 38
4) 145
5) 114
1) 162 см3
2) 182 см3
3) 152 см3
4) 180 см3
5) 175 см3

Чис­ло­вая по­сле­до­ва­тель­ность за­да­на усло­ви­я­ми x_n плюс 1 = x_n минус 2, x_1 = 3. Какое из ука­зан­ных чисел равно x3?

1) −3
2) 1
3) −2
4) 0
5) −1
1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 10
3)  дробь: чис­ли­тель: 9, зна­ме­на­тель: конец дроби 10
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 2 ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 8 конец ар­гу­мен­та мень­ше 4, ко­рень из: на­ча­ло ар­гу­мен­та: 3 минус 2x конец ар­гу­мен­та боль­ше или равно 3 конец си­сте­мы . и ука­жи­те ко­ли­че­ство целых ре­ше­ний си­сте­мы не­ра­венств.

1) 2
2) 1
3) 5
4) 3
5) 4
1) 4,5 кв. ед.
2) 3 кв. ед.
3) 1,5 кв. ед.
4) 6 кв. ед.
5) 9 кв. ед.

К окруж­но­сти про­ве­де­на се­ку­щая CA. Тре­уголь­ник BOE рав­но­сто­рон­ний, CA = 12. Длина ка­са­тель­ной CE равна

1) 4 ко­рень из 2
2) 3 ко­рень из 5
3) 6
4) 4
5) 4 ко­рень из 3
1)  дробь: чис­ли­тель: a плюс 1, зна­ме­на­тель: 3a плюс 1 конец дроби
2)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a минус 1 конец дроби
3)  дробь: чис­ли­тель: 3a плюс 1, зна­ме­на­тель: a плюс 1 конец дроби
4)  дробь: чис­ли­тель: a минус 1, зна­ме­на­тель: 3a плюс 1 конец дроби
5)  дробь: чис­ли­тель: a минус 1, зна­ме­на­тель: 3a минус 1 конец дроби
1)  ко­рень из: на­ча­ло ар­гу­мен­та: 87 конец ар­гу­мен­та
2) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та
5) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
1) 300
2) 325
3) 323
4) 303
5) 312
1) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка целая часть: 9, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 9; плюс бес­ко­неч­ность \left пра­вая круг­лая скоб­ка
3) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 9; целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4 пра­вая квад­рат­ная скоб­ка
4) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 9; целая часть: 9, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 4 пра­вая квад­рат­ная скоб­ка
5) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 9; плюс бес­ко­неч­ность \left пра­вая круг­лая скоб­ка

Дву­гран­ный угол равен 60°. Из точки N на его ребре в гра­нях про­ве­де­ны пер­пен­ди­ку­ляр­ные ребру от­рез­ки NB = 8 см, AN = 2 см. Най­ди­те длину AB.

1) 6 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
3) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
4) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
5) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та см
21.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Чему равна пло­щадь од­но­го кро­вель­но­го листа?

1) 1,6 м2
2) 0,98 м2
3) 0,96 м2
4) 9,8 м2
5) 98 м2
22.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Чему равна пло­щадь по­верх­но­сти башни?

1) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та Пи м2
2) 12 Пи м2
3) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та Пи м2
4) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та Пи м2
5) 5 ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та Пи м2
23.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Сколь­ко нужно ис­поль­зо­вать ма­те­ри­а­ла (кро­вель­но­го же­ле­за) для по­кры­тия крыши с уче­том швов и об­ре­зок? (округ­ли­те до целых).  левая круг­лая скоб­ка Пи = 3,14 пра­вая круг­лая скоб­ка

1) 52 м2
2) 45 м2
3) 37 м2
4) 25 м2
5) 31 м2
24.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Какое ко­ли­че­ство ли­стов по­на­до­бит­ся для башни?

1) 34
2) 30
3) 32
4) 38
5) 40
25.  
i

Стро­и­тель­ной ком­па­нии дали за­да­ние по­стро­ить дет­скую иг­ро­вую пло­щад­ку, в ко­то­рой дол­жен быть домик в виде башни. Ко­ни­че­ская крыша башни имеет диа­метр 6 м и вы­со­ту 2 м. Для этого ку­пи­ли листы кро­вель­но­го же­ле­за раз­ме­ра­ми 0,7 м × 1,4 м. На швы и об­рез­ки тра­тит­ся 10 % от пло­ща­ди крыши.

Во сколь­ко раз уве­ли­чит­ся объем ко­ну­са, если его ра­ди­ус уве­ли­чить в 4 раза, а вы­со­ту оста­вить преж­ней?

1) в 24 раза
2) в 64 раза
3) в 13 раз
4) в 20 раз
5) в 16 раз
1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2) 1,5
3) −1,5
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 6 конец дроби
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) 1,2
7)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
8) 5 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
1) −10
2) 10
3) −18
4) 9
5) 18
6) 0
7) 2
8) 1
1) (4; 7)
2) (0; 3)
3) [−1; 1]
4) (2; 3)
5) [3; 5]
6) (2; 7)
7) [−3; 5]
8) [2; 5]

Двое ра­бо­чих из­го­то­ви­ли 60 де­та­лей за время t. Про­из­во­ди­тель­ность пер­во­го со­став­ля­ет  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби про­из­во­ди­тель­но­сти вто­ро­го. Из ниже при­ве­ден­ных от­ве­тов ука­жи­те про­из­во­ди­тель­ность вто­ро­го ра­бо­че­го, если из­вест­но, что t — целое число.

1) 16 де­та­лей в час
2) 22 де­та­лей в час
3) 10 де­та­лей в час
4) 15 де­та­лей в час
5) 20 де­та­лей в час
6) 18 де­та­лей в час
7) 12 де­та­лей в час
8) 9 де­та­лей в час
1)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 3; 6 пра­вая квад­рат­ная скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка минус 3; 3 пра­вая круг­лая скоб­ка
8)  левая квад­рат­ная скоб­ка минус 6; 3 пра­вая квад­рат­ная скоб­ка

Дана си­сте­ма урав­не­ний

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни x умно­жить на 4 в сте­пе­ни y = 32, ло­га­рифм по ос­но­ва­нию 3 левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию 3 2, конец си­сте­мы .

где (x; y) — ре­ше­ние дан­ной си­сте­мы. Сумма (x + y) при­над­ле­жит про­ме­жут­ку?

1)  левая круг­лая скоб­ка 5; 12 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка 5; 7 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 0; 10 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1; 6 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка 0; 8 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка 10; 24 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка минус 8; 4 пра­вая круг­лая скоб­ка
1)  дробь: чис­ли­тель: минус левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
2)  дробь: чис­ли­тель: 2 левая круг­лая скоб­ка x в квад­ра­те плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
3)  дробь: чис­ли­тель: минус 2 левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
4)  дробь: чис­ли­тель: минус левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
5)  дробь: чис­ли­тель: минус 2 левая круг­лая скоб­ка x в кубе пра­вая круг­лая скоб­ка плюс 1, зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
6)  дробь: чис­ли­тель: минус 2x плюс 1, зна­ме­на­тель: x в квад­ра­те конец дроби
7)  дробь: чис­ли­тель: минус левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в кубе конец дроби
8)  дробь: чис­ли­тель: минус 2x левая круг­лая скоб­ка x в квад­ра­те плюс 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в кубе конец дроби
1)  левая круг­лая скоб­ка 36 плюс 36 ко­рень из 3 пра­вая круг­лая скоб­ка см
2) 8 см
3) 8 ко­рень из 2 см
4) 12 см
5) 9 см
6) 27 см
7)  левая круг­лая скоб­ка 4 ко­рень из 3 минус 4 пра­вая круг­лая скоб­ка см
8) 4 ко­рень из 2 см
1) y минус x минус 2 = 0
2) y = минус x минус 2
3) y=8x плюс 4
4) x плюс y минус 4 = 0
5) x плюс y плюс 2 = 0
6) y = минус x
7) y = минус x плюс 4
8) 8x минус y плюс 4 = 0

В пря­мой пра­виль­ной ше­сти­уголь­ной приз­ме ABCDEFA1B1C1D1E1F1 имеем B_1D = 8 ко­рень из 3 и \angleB_1DB = 45 гра­ду­сов. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти и пло­щадь пол­ной по­верх­но­сти дан­ной приз­мы.

1) 768 ко­рень из 3
2) 228 ко­рень из 3
3) 288 ко­рень из 3
4) 384 ко­рень из 6
5) 288 ко­рень из 2
6) 192 ко­рень из 3
7) 576 ко­рень из 6
8) 384 ко­рень из 2