Вариант № 35315

При выполнении заданий с выбором ответа отметьте верные ответы.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:05:00
1
Тип 1 № 3457
i

Упро­сти­те вы­ра­же­ние:  ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 25 конец ар­гу­мен­та умно­жить на дробь: чис­ли­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: минус 64 конец ар­гу­мен­та конец дроби умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та .



2
Тип 2 № 7866
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка a плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: a конец дроби плюс 2 пра­вая круг­лая скоб­ка умно­жить на дробь: чис­ли­тель: 1, зна­ме­на­тель: a плюс 1 конец дроби при a= минус 5.



3
Тип 3 № 6924
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та синус в квад­ра­те дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби .



4
Тип 4 № 7879
i

При­ве­ди­те од­но­член 3a в кубе b в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка a в сте­пе­ни 8 b в сте­пе­ни 4 к стан­дарт­но­му виду.



5
Тип 5 № 3413
i

Най­ди­те от­ри­ца­тель­ный ко­рень урав­не­ния 8|x| минус 5|x| минус 17=0.



6
Тип 6 № 1961
i

Най­ди­те (x − y), если пара чисел (x; y) яв­ля­ет­ся ре­ше­ни­ем си­сте­мы урав­не­ний:  си­сте­ма вы­ра­же­ний x в квад­ра­те y = 25,xy в квад­ра­те = 5. конец си­сте­мы .



7
Тип 7 № 4186
i

Най­ди­те не­опре­делённый ин­те­грал  при­над­ле­жит t левая круг­лая скоб­ка синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка dx.



8
Тип 8 № 3280
i

В шар ра­ди­у­сом 5 м впи­сан ци­линдр с диа­мет­ром ос­но­ва­ния 6 м. Вы­со­та ци­лин­дра равна



9
Тип 9 № 7895
i

Наи­мень­шее на­ту­раль­ное ре­ше­ние си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 4 конец дроби боль­ше или равно дробь: чис­ли­тель: 2, зна­ме­на­тель: x плюс 1 конец дроби , дробь: чис­ли­тель: 5, зна­ме­на­тель: x конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус 5 конец дроби конец си­сте­мы . равно



10
Тип 10 № 6953
i

Ре­ши­те урав­не­ние:  ко­си­нус левая круг­лая скоб­ка 4x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка =1.



11
Тип 11 № 4198
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 5x в квад­ра­те плюс 3x, зна­ме­на­тель: x конец дроби , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 5;8 пра­вая круг­лая скоб­ка .



12
Тип 12 № 8182
i

Ре­ши­те не­ра­вен­ство:  дробь: чис­ли­тель: 7, зна­ме­на­тель: 2x минус 3 конец дроби мень­ше 0.



13
Тип 13 № 1969
i

Cумма двух сто­рон тре­уголь­ни­ка равна 18 см, а тре­тью сто­ро­ну его бис­сек­три­са делит на от­рез­ки 4 см и 5 см. Наи­мень­шая сто­ро­на тре­уголь­ни­ка равна



14
Тип 14 № 4142
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 5, дробь: чис­ли­тель: 6, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3x плюс 1 конец ар­гу­мен­та конец дроби dx.



15
Тип 15 № 3430
i

B еди­нич­ном кубе най­ди­те рас­сто­я­ние от вер­ши­ны В до плос­ко­сти (АСВ1).



16
Тип 16 № 8126
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 4x плюс 1 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 3x минус 2 конец ар­гу­мен­та =5.



17
Тип 17 № 3691
i

Ре­ши­те си­сте­му не­ра­венств

 си­сте­ма вы­ра­же­ний 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка мень­ше левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 6 минус 8 x пра­вая круг­лая скоб­ка , левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те минус 4 x минус 12 пра­вая круг­лая скоб­ка боль­ше 1. конец си­сте­мы .



18
Тип 18 № 4151
i

Най­ди­те пло­щадь фи­гу­ры, огра­ни­чен­ной пря­мой и па­ра­бо­лой: y= минус x в квад­ра­те плюс 2x,y= минус x минус 1.



19
Тип 19 № 7899
i

Сто­ро­ны па­рал­ле­ло­грам­ма равны 5 см и 6 см, а одна из диа­го­на­лей равна 7 см. Най­ди­те наи­мень­шую вы­со­ту па­рал­ле­ло­грам­ма.



20
Тип 20 № 8190
i

Ариф­ме­ти­че­ская про­грес­сия 5, 8, 11... и гео­мет­ри­че­ская про­грес­сия 4, 8, 16... имеют по 50 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?



21
Тип 21 № 7933
i

Най­ди­те x и y, если из­вест­но, что век­то­ры \vecc = левая круг­лая скоб­ка минус 2; y; минус 1 пра­вая круг­лая скоб­ка и \vecd = левая круг­лая скоб­ка 4; 5; x пра­вая круг­лая скоб­ка кол­ли­не­ар­ны. Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дят со­от­вет­ству­ю­щие зна­че­ния x и y од­но­вре­мен­но.



22
Тип 22 № 2691
i

Зна­че­ние про­из­ве­де­ния

 дробь: чис­ли­тель: x в квад­ра­те плюс 3 x плюс 2 x y плюс 6 y, зна­ме­на­тель: 2 x в квад­ра­те плюс x y плюс 6 x плюс 3 y конец дроби умно­жить на дробь: чис­ли­тель: 6 x в квад­ра­те плюс 2 x плюс 3 x y плюс y, зна­ме­на­тель: x y минус 2 x плюс 2 y в квад­ра­те минус 4 y конец дроби

равно



23
Тип 23 № 7920
i

Ре­ши­те урав­не­ние: 9 в сте­пе­ни левая круг­лая скоб­ка \log пра­вая круг­лая скоб­ка _9 левая круг­лая скоб­ка 4x минус 4 пра­вая круг­лая скоб­ка =x в квад­ра­те минус 1.



24
Тип 24 № 3653
i

Ре­ши­те не­ра­вен­ство: 2 синус x минус 1 боль­ше 0.



25
Тип 25 № 8062
i

Найти урав­не­ние ка­са­тель­ной к гра­фи­ку функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка в точке с абс­цис­сой x_0, если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = тан­генс x,x_0= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби .



26
Тип 26 № 2241
i
Развернуть

Най­ди­те сумму век­то­ров \overrightarrowAA_1 и \overrightarrowE_1D_1.



27
Тип 27 № 3152
i
Развернуть

Сколь­ко ше­сти­знач­ных кодов для от­кры­ва­ния сейфа можно со­ста­вить из дан­ных цифр так, чтобы буква M была пер­вой?



28
Тип 28 № 4007
i
Развернуть

Под каким углом синяя грань Пи­ра­мид­ки на­кло­не­на к жел­той грани?



29
Тип 29 № 2804
i
Развернуть

Торт раз­делён ше­стью диа­мет­ра­ми на ку­соч­ки рав­ной ве­ли­чи­ны. Най­ди­те массу каж­до­го ку­соч­ка, если сред­няя плот­ность торта 0,4 г/см3.



30
Тип 30 № 2140
i
Развернуть

Пло­щадь за­ас­фаль­ти­ро­ван­ной до­рож­ки вме­сте с ос­но­ва­ни­ем дач­но­го до­ми­ка равна 126 м2. Из­вест­но, что ши­ри­на до­рож­ки везде одна и та же. Най­ди­те ши­ри­ну до­рож­ки.



31
Тип 31 № 7724
i

Функ­ция за­да­на урав­не­ни­ем y = ко­рень из: на­ча­ло ар­гу­мен­та: 9 минус x в квад­ра­те конец ар­гу­мен­та . Уста­но­ви­те со­от­вет­ствия:

A) Об­ласть опре­де­ле­ния функ­ции

Б) Нули функ­ции

1) {3}

2) [−3; 3]

3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

4) {−3; 3}


Ответ:

32
Тип 32 № 7832
i

Впи­сан­ная окруж­ность раз­де­ли­ла ги­по­те­ну­зу тре­уголь­ни­ка на от­рез­ки 4 и 6. Уста­но­ви­те со­от­вет­ствие между дли­на­ми ка­те­тов тре­уголь­ни­ка и чис­ло­вы­ми про­ме­жут­ка­ми, ко­то­рым при­над­ле­жат их зна­че­ния.

A) Боль­ший катет тре­уголь­ни­ка

Б) Мень­ший катет тре­уголь­ни­ка

1) (3; 5)

2) (7; 9)

3) (6; 7)

4) [5; 6]


Ответ:

33
Тип 33 № 7734
i

Пред­ставь­те в виде мно­го­чле­на вы­ра­же­ние  левая круг­лая скоб­ка 3x минус 4 пра­вая круг­лая скоб­ка в квад­ра­те левая круг­лая скоб­ка 2x плюс 1 пра­вая круг­лая скоб­ка в квад­ра­те . Уста­но­ви­те со­от­вет­ствия между ко­эф­фи­ци­ен­том при x2, ко­эф­фи­ци­ен­том при x и чис­ло­вым про­ме­жут­кам, ко­то­рым они при­над­ле­жат.

A) Ко­эф­фи­ци­ент при x2

Б) Ко­эф­фи­ци­ент при x

1) [20; 30)

2) (−25; −20)

3) (−10; 10)

4) [40; 42]


Ответ:

34
Тип 34 № 8257
i

При по­мо­щи гра­фи­ка функ­ции  y = | |x минус 1| минус 3| вы­яс­ни­те, сколь­ко ре­ше­ний имеет урав­не­ние  | |x минус 1| минус 3| = a в за­ви­си­мо­сти от зна­че­ний па­ра­мет­ра a. Уста­но­ви­те со­от­вет­ствие между зна­че­ни­я­ми па­ра­мет­ра a и ко­ли­че­ством ре­ше­ний урав­не­ния.

A)  0 мень­ше a мень­ше 3

Б)  a боль­ше 3

1)  2

2)  4

3)  3

4)  1


Ответ:

35
Тип 35 № 8206
i

Дана гео­мет­ри­че­ская про­грес­сия (bn), где b2  =  8 и b5  =  512. Уста­но­ви­те со­от­вет­ствие между вы­ра­же­ни­ем и его чис­ло­вым зна­че­ни­ем

A) S5

Б) 10 умно­жить на b_3

1) 682

2) 80

3) 674

4) 320


Ответ:

36
Тип 36 № 3921
i

Если

 S = дробь: чис­ли­тель: 0,536 в квад­ра­те минус 0,464 в квад­ра­те , зна­ме­на­тель: 3,6 в квад­ра­те минус 7,2 умно­жить на 2,4 плюс 2,4 в квад­ра­те конец дроби

то верны сле­ду­ю­щие утвер­жде­ния.



37
Тип 37 № 7785
i

Най­ди­те зна­че­ние вы­ра­же­ния  синус 67 гра­ду­сов синус 53 гра­ду­сов минус синус 23 гра­ду­сов синус 37 гра­ду­сов .



38
Тип 38 № 2147
i

Cумма трех дан­ных чисел, со­став­ля­ю­щих ариф­ме­ти­че­скую про­грес­сию, у ко­то­рой раз­ность боль­ше нуля, равна 15. Если к этим чис­лам при­ба­вить со­от­вет­ствен­но 1, 4 и 19, то по­лу­чен­ные числа со­став­ля­ют пер­вые три члена гео­мет­ри­че­ской про­грес­сии. Дан­ные три числа равны:



39
Тип 39 № 8112
i

Ре­ши­те си­сте­му ра­ци­о­наль­ных урав­не­ний

 си­сте­ма вы­ра­же­ний новая стро­ка дробь: чис­ли­тель: 2, зна­ме­на­тель: x минус y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x плюс y конец дроби =1, новая стро­ка дробь: чис­ли­тель: 5, зна­ме­на­тель: x плюс y конец дроби минус дробь: чис­ли­тель: 1, зна­ме­на­тель: x минус y конец дроби =4. конец си­сте­мы .

В от­ве­те ука­жи­те зна­че­ние вы­ра­же­ния 2x плюс 3y.



40
Тип 40 № 3925
i

В конус с вы­со­той 15 см и ра­ди­у­сом 10 см впи­сан ци­линдр с вы­со­той 12 см. Най­ди­те объём ци­лин­дра.


Завершить работу, свериться с ответами, увидеть решения.