Каталог заданий.
Задания для подготовки
Версия для печати и копирования в MS Word
1
Тип 20 № 2017
i

В ариф­ме­ти­че­ской про­грес­сии най­ди­те a7, если a_1 = минус ко­рень из 2 и d = 1 плюс ко­рень из 2 .



2
Тип 20 № 2021
i

Чис­ло­вая по­сле­до­ва­тель­ность за­да­на усло­ви­я­ми x_n плюс 1 = x_n минус 2, x_1 = 3. Какое из ука­зан­ных чисел равно x3?



3
Тип 20 № 2050
i

Hай­ди­те q дан­ной гео­мет­ри­че­ской про­грес­сии: 54; 36;...



4
Тип 20 № 2058
i

Cумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 9, а сумма квад­ра­тов чле­нов про­грес­сии 40,5. Най­ди­те зна­ме­на­тель дан­ной про­грес­сии.



5
Тип 20 № 2085
i

Hай­ди­те S, где S — сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии:  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: конец дроби 81; ...



6
Тип 20 № 2093
i

Cумма семи пер­вых чле­нов гео­мет­ри­че­ской про­грес­сии 48; 24; ... равна?



7
Тип 20 № 2128
i

Hай­ди­те част­ное  дробь: чис­ли­тель: b_1, зна­ме­на­тель: q конец дроби для гео­мет­ри­че­ской про­грес­сии, у ко­то­рой сумма пер­во­го и тре­тье­го чле­нов равна 40, а сумма вто­ро­го и чет­вер­то­го равна 80.



8
Тип 20 № 2161
i

В ариф­ме­ти­че­ской про­грес­сии сумма a_4 плюс a_6 = 20. Най­ди­те пятый член дан­ной про­грес­сии.



9
Тип 20 № 2192
i

Най­ди­те пер­вый член ариф­ме­ти­че­ской про­грес­сии, если сумма два­дца­ти яти пер­вых чле­нов про­грес­сии равна 250 и d = 3.



10
Тип 20 № 2406
i

Если сумма с пя­то­го по вось­мой член ариф­ме­ти­че­ской про­грес­сии равна 48, а раз­ность про­грес­сии равна 2, то ее пер­вый член равен



11
Тип 20 № 2437
i

Вы­чис­ли­те сумму бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии: 0,6; 0,06; 0,006,...



12
Тип 20 № 2472
i

В гео­мет­ри­че­ской про­грес­сии b_3 = дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби и q = 3. Най­ди­те вось­мой член про­грес­сии.



13
Тип 20 № 2511
i

Гео­мет­ри­че­ская про­грес­сия за­да­на усло­ви­ем: b_1 = 3, b_n плюс 1 = 2 умно­жить на b_n. Най­ди­те пятый член дан­ной про­грес­сии.



14
Тип 20 № 2612
i

Какая из пред­ло­жен­ных по­сле­до­ва­тель­но­стей за­да­ет­ся фор­му­лой: b_n = 2 в сте­пе­ни левая круг­лая скоб­ка n минус 3 пра­вая круг­лая скоб­ка .



15
Тип 20 № 2616
i

Сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 32, а сумма ее пер­вых пяти чле­нов равна 31. Най­ди­те пер­вый член про­грес­сии.



16
Тип 20 № 2682
i

Пер­вый член ариф­ме­ти­че­ской про­грес­сии равен 8, раз­ность про­грес­сии равна 3. Най­ди­те a25.



17
Тип 20 № 3242
i

Най­ди­те по­ло­жи­тель­ное число С, ко­то­рое нужно рас­по­ло­жить между чис­ла­ми А = 81 и В = 9 так, чтобы по­лу­чи­лось три по­сле­до­ва­тель­ных члена А, С и В гео­мет­ри­че­ской про­грес­сии.



18
Тип 20 № 3277
i

Между чис­ла­ми А = 6 и B= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби вставь­те по­ло­жи­тель­ное число С так, чтобы по­лу­чи­лось три по­сле­до­ва­тель­ных члена А, С и В гео­мет­ри­че­ской про­грес­сии. Число С равно



19
Тип 20 № 3281
i

Сумма чле­нов бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии в 3 раза боль­ше ее пер­во­го члена. Най­ди­те от­но­ше­ние  дробь: чис­ли­тель: b_7, зна­ме­на­тель: b_5 конец дроби .



20
Тип 20 № 3312
i

Пер­вый член ариф­ме­ти­че­ской про­грес­сии равен 5, раз­ность про­грес­сии d = −7. Най­ди­те ко­ли­че­ство чле­нов дан­ной ариф­ме­ти­че­ской про­грес­сии, если a_n= минус 163.



21
Тип 20 № 3316
i

Гео­мет­ри­че­ская про­грес­сия {bn} — воз­рас­та­ю­щая, b_2=4, b_4=36. Най­ди­те b5.



22
Тип 20 № 3347
i

Най­ди­те пер­вые пять чле­нов по­сле­до­ва­тель­но­сти на­ту­раль­ных чисел крат­ных 5.



23
Тип 20 № 3386
i

Най­ди­те пер­вые че­ты­ре члена по­сле­до­ва­тель­но­сти {an}, если a1 = 7 и a_n плюс 1=5 плюс 2a_n.



24
Тип 20 № 3452
i

Ука­жи­те фор­му­лу n-го члена ариф­ме­ти­че­ской про­грес­сии, если a_1= минус 3 и  d= минус 5.



25
Тип 20 № 3456
i

Опре­де­ли­те, какая из пред­ло­жен­ных по­сле­до­ва­тель­но­стей не яв­ля­ет­ся гео­мет­ри­че­ской про­грес­си­ей.



26
Тип 20 № 3526
i

Най­ди­те сумму бес­ко­неч­ной гео­мет­ри­че­ской про­грес­сии, опре­де­ля­ю­щей­ся по фор­му­ле b_n = 6 умно­жить на левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни n .



27
Тип 20 № 3567
i

Най­ди­те пер­вый по­ло­жи­тель­ный член ариф­ме­ти­че­ской про­грес­сии: −20,3; −18,7; ...



28
Тип 20 № 3689
i

Ука­жи­те фор­му­лу n-го члена по­сле­до­ва­тель­но­сти: 3; 8; 13; 18; 23 …



29
Тип 20 № 3744
i

В ариф­ме­ти­че­ской про­грес­сии a1 = −2, d = 16, най­ди­те номер члена ариф­ме­ти­че­ской про­грес­сии, рав­но­го 174.



30
Тип 20 № 3773
i

По­сле­до­ва­тель­ность (bn) гео­мет­ри­че­ская про­грес­сия. Най­ди­те: b4, если b_1=128 и q= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .



31
Тип 20 № 3808
i

Сумма всех чисел ряда 6; 2;  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби ;  дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби ; ... равна



32
Тип 20 № 3816
i

Сумма бес­ко­неч­но убы­ва­ю­щей про­грес­сии равна 32, а сумма ее пер­вых че­ты­рех чле­нов 30. Чему равен пер­вый член дан­ной про­грес­сии?



33
Тип 20 № 3843
i

Учи­тель дал за­да­ние: из пред­ло­жен­ных по­сле­до­ва­тель­но­стей

а)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 5 конец дроби ;\ldots

б)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 24 конец дроби ;\ldots

в) 10 ; 8 ; 6 ; 2 ; \ldots

вы­брать бес­ко­неч­но убы­ва­ю­щую гео­мет­ри­че­скую про­грес­сию и найти сумму всех его чле­нов. Если уче­ник вы­пол­нил за­да­ние верно, то в от­ве­те он по­лу­чил.


34
Тип 20 № 3851
i

Най­ди­те зна­ме­на­тель гео­мет­ри­че­ской про­грес­сии (bn), если b_19 минус b_17=1800, а b_18 минус b_16=600.



35
Тип 20 № 8015
i

Сумма пер­вых трех чле­нов ариф­ме­ти­че­ской про­грес­сии равна 27, а сумма по­след­них трех чле­нов дан­ной про­грес­сии равна 45. Сколь­ко чле­нов в за­дан­ной ариф­ме­ти­че­ской про­грес­сии, если ее пер­вый член равен 7?



36
Тип 20 № 8078
i

Сумма пер­вых че­ты­рех чле­нов ариф­ме­ти­че­ской про­грес­сии равна 38, а сумма по­след­них че­ты­рех чле­нов дан­ной про­грес­сии равна 62. Сколь­ко чле­нов в за­дан­ной ариф­ме­ти­че­ской про­грес­сии, если ее пер­вый член равен 5?



37
Тип 20 № 8150
i

Ариф­ме­ти­че­ская про­грес­сия 4, 7, 10... и гео­мет­ри­че­ская про­грес­сия 2, 4, 8... имеют по 40 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?



38
Тип 20 № 8190
i

Ариф­ме­ти­че­ская про­грес­сия 5, 8, 11... и гео­мет­ри­че­ская про­грес­сия 4, 8, 16... имеют по 50 чле­нов. Сколь­ко оди­на­ко­вых чле­нов в обеих про­грес­си­ях?


Завершить работу, свериться с ответами, увидеть решения.