Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 9314
1.  
i

Число n со­став­ля­ет p% от числа a. Число a равно

1) a= дробь: чис­ли­тель: 100 p, зна­ме­на­тель: n конец дроби
2) a= дробь: чис­ли­тель: 100, зна­ме­на­тель: n p конец дроби
3) a= дробь: чис­ли­тель: 100 n, зна­ме­на­тель: 2 p конец дроби
4) a= дробь: чис­ли­тель: 100 n, зна­ме­на­тель: p конец дроби
2.  
i

Най­ди­те мо­дуль числа z = z_1 плюс z_2, если z_1 = 2 плюс 3i, z_2 = минус 1 плюс 4i.

1) 5 ко­рень из 2
2) 2 ко­рень из 5
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та
4)  ко­рень из: на­ча­ло ар­гу­мен­та: 221 конец ар­гу­мен­та
3.  
i

Cокра­ти­те дробь:  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 70 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 35 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та конец дроби .

1)  ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та
4)  ко­рень из 2
4.  
i

Вы­чис­ли­те:  ко­си­нус левая круг­лая скоб­ка 2\arcctg левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка .

1) −1
2) 0
3)  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
5.  
i

Раз­ло­жи­те мно­го­член на мно­жи­те­ли: ax минус ay плюс xb минус yb.

1)  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a плюс b пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка x плюс y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка x минус y пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус b пра­вая круг­лая скоб­ка
6.  
i

Pешите не­ра­вен­ство: 4 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка плюс 5x боль­ше или равно 3x.

1)  левая квад­рат­ная скоб­ка минус 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая квад­рат­ная скоб­ка 2; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
7.  
i

Ре­ши­те си­сте­му урав­не­ний

 си­сте­ма вы­ра­же­ний x в квад­ра­те минус y в квад­ра­те =7,3x плюс 3y=63. конец си­сте­мы .

Най­ди­те раз­ность x минус y.
1) 14
2) 147
3) −3
4)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби
8.  
i

Вы­чис­ли­те пре­дел \undersetx\to минус бес­ко­неч­ность \mathop\lim левая круг­лая скоб­ка минус x в кубе плюс 2x минус 1 пра­вая круг­лая скоб­ка .

1)  минус бес­ко­неч­ность
2) 1
3) 0
4)  бес­ко­неч­ность
9.  
i

Cумма двух сто­рон тре­уголь­ни­ка равна 18 см, а тре­тью сто­ро­ну его бис­сек­три­са делит на от­рез­ки 4 см и 5 см. Наи­мень­шая сто­ро­на тре­уголь­ни­ка равна

1) 10 см
2) 7 см
3) 9 см
4) 8 см
10.  
i

B пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де SABCD точка O — центр ос­но­ва­ния, S — вер­ши­на, SA = 10 см и BD = 16 см. Най­ди­те длину от­рез­ка SO.

1) 7 см
2) 8 см
3) 5 см
4) 6 см
11.  
i

Ре­ши­те урав­не­ние  ко­си­нус в квад­ра­те x плюс 4 ко­си­нус x минус 5=0 и най­ди­те его корни на x при­над­ле­жит левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
2)  Пи
3) 0
4)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби
12.  
i

Pешите си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний дробь: чис­ли­тель: x плюс 3, зна­ме­на­тель: x минус 4 конец дроби боль­ше 1, дробь: чис­ли­тель: x минус 5, зна­ме­на­тель: 2x плюс 4 конец дроби мень­ше или равно 2. конец си­сте­мы .

1)  левая квад­рат­ная скоб­ка минус целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 ; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус целая часть: 4, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус 2; 4 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 4; плюс бес­ко­неч­ность ; пра­вая круг­лая скоб­ка
13.  
i

Вы­чис­ли­те  при­над­ле­жит t пре­де­лы: от 0 до 3, x левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус x пра­вая круг­лая скоб­ка dx.

1)  минус дробь: чис­ли­тель: 153, зна­ме­на­тель: 4 конец дроби
2) 0
3)  дробь: чис­ли­тель: 117, зна­ме­на­тель: 4 конец дроби
4)  минус дробь: чис­ли­тель: 155, зна­ме­на­тель: 4 конец дроби
14.  
i

Но­ме­ра або­нен­тов те­ле­фон­ной сети не на­чи­на­ют­ся с цифр 0, 8, 9 и со­сто­ят из 7 цифр. Какое наи­боль­шее ко­ли­че­ство або­нен­тов может об­слу­жи­вать эта сеть?

1) 7 000 000
2) 700 000
3) 70 000 000
4) 1 000 000
15.  
i

Чему равен угол KPN, если из­вест­но, что угол \angle KON= альфа =130 гра­ду­сов .

1) 115°
2) 105°
3) 110°
4) 120°
16.  
i

Две окруж­но­сти имеют общий центр. На боль­шей окруж­но­сти за­дан­ной урав­не­ни­ем левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка в квад­ра­те =100 от­ме­че­ны точки A(9; 13) и B(3; −5) так, что хорда AB ка­са­ет­ся мень­шей окруж­но­сти. Най­ди­те квад­рат ра­ди­у­са мень­шей окруж­но­сти.

1) 10
2) 12
3) 6
4) 8
17.  
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 x пра­вая круг­лая скоб­ка =96 минус 2 умно­жить на x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 2 пра­вая круг­лая скоб­ка равна ...

1) 225
2) 189
3) 243
4) 144
18.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 3 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка мень­ше дробь: чис­ли­тель: 3, зна­ме­на­тель: 9 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби пра­вая круг­лая скоб­ка конец дроби , 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка боль­ше 2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 1; 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка
2) [−3; 3)
3)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
19.  
i

Най­ди­те пер­во­об­раз­ную функ­ции f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =2 левая круг­лая скоб­ка 1 плюс 2x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка , про­хо­дя­щую через точку  левая круг­лая скоб­ка минус 10;8 пра­вая круг­лая скоб­ка .

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе минус дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x плюс дробь: чис­ли­тель: 2864, зна­ме­на­тель: 3 конец дроби
3)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби x в квад­ра­те минус 3x минус дробь: чис­ли­тель: 2864, зна­ме­на­тель: 3 конец дроби
4)  минус 5x в квад­ра­те минус 6x плюс дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби x в кубе плюс дробь: чис­ли­тель: 5344, зна­ме­на­тель: 3 конец дроби
20.  
i

Най­ди­те ра­ди­ус шара, если треть его диа­мет­ра равна 6.

1) 12
2) 9
3) 6
4) 10
21.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Ка­ко­ва пло­щадь пола дач­но­го до­ми­ка?

1) 20 м2
2) 12 м2
3) 18 м2
4) 24 м2
22.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Каков объем дач­но­го до­ми­ка? Ответ при­ве­ди­те в ку­би­че­ских мет­рах.

1) 24
2) 18
3) 12
4) 72
23.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Най­ди­те ко­ли­че­ство сте­но­вых па­не­лей, ко­то­рое по­тре­бу­ет­ся для стро­и­тель­ства до­ми­ка без учета от­хо­дов, если па­не­ли не раз­ре­зать.

1) 30
2) 25
3) 40
4) 20
24.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Ка­ко­ва длина за­бо­ра во­круг до­ми­ка. если забор от­сто­ит от до­ми­ка на 5 м?

1) 40 м
2) 20 м
3) 80 м
4) 60 м
25.  
i

Самат стро­ит дач­ный домик формы пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да с раз­ме­ра­ми 6 м х 4 м и вы­со­той 3 м. Для этого он за­ку­пил сте­но­вые па­не­ли «Сэнд­вич» раз­ме­ра­ми 3 м х 1 м, и двер­ное по­лот­но с раз­ме­ра­ми 2,1 м х 1 м, окон­ные блоки раз­ме­ра­ми 1,8 м х 1,2 м.

Рас­счи­тай­те наи­мень­шую пло­щадь от­хо­дов от сте­но­вых па­не­лей, остав­ших­ся после стро­и­тель­ства в квад­рат­ных мет­рах, с уче­том двух окон и двери.

1) 4,26 м2
2) 6,42 м2
3) 4,32 м2
4) 8,65 м2
26.  
i

Зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка плюс 2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 левая круг­лая скоб­ка де­ся­тич­ный ло­га­рифм ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка равно

1) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3)  минус 0,5
4) 0,2
5)  левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
6) 0,5
27.  
i

Вы­бе­ри­те про­ме­жут­ки, в ко­то­рые вхо­дит зна­че­ние вы­ра­же­ния

 синус левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби плюс Пи пра­вая круг­лая скоб­ка минус ко­си­нус левая круг­лая скоб­ка Пи минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка плюс тан­генс левая круг­лая скоб­ка Пи плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка плюс тан­генс левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка .

1)  левая круг­лая скоб­ка 0,75; 7 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка 100; 1000 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 0,5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка минус 150; 0 пра­вая круг­лая скоб­ка
28.  
i

Зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: x в квад­ра­те минус 2x, зна­ме­на­тель: 4x в квад­ра­те конец дроби умно­жить на дробь: чис­ли­тель: 2x, зна­ме­на­тель: 2 минус x конец дроби равно

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
2) 5 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
3) −0,5
4) 2 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6)  левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
29.  
i

Вы­чис­ли­те зна­че­ние про­из­вод­ной функ­ции f(x) в дан­ной точке f' левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка , если f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 3 в сте­пе­ни x , зна­ме­на­тель: x в квад­ра­те плюс 1 конец дроби .

1)  дробь: чис­ли­тель: 5, зна­ме­на­тель: на­ту­раль­ный ло­га­рифм 3 минус 1 конец дроби
2)  дробь: чис­ли­тель: 3 левая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 3 минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 конец дроби
3)  левая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 3 минус 1 пра­вая круг­лая скоб­ка
4)  дробь: чис­ли­тель: 2 левая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 3 минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 3 конец дроби
5)  дробь: чис­ли­тель: левая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 3 минус 1 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 4 конец дроби
6) 1,5 левая круг­лая скоб­ка на­ту­раль­ный ло­га­рифм 3 минус 1 пра­вая круг­лая скоб­ка
30.  
i

На ри­сун­ке изоб­ра­жен рав­но­сто­рон­ний тре­уголь­ник ABC. Най­ди­те длины век­то­ров \overrightarrowAB минус \overrightarrowAC и \overrightarrowAB плюс \overrightarrowAC, если сто­ро­ны тре­уголь­ни­ка равны 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та .

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,5
4) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ,6
5) 2, 6
6) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ,7
31.  
i

Ре­ши­те урав­не­ние: z в кубе =1.

1) z=1,
2) z= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: i ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3) z= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: i ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) z= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби плюс дробь: чис­ли­тель: i ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
5) z= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби минус дробь: чис­ли­тель: i ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 4 конец дроби .
6) z= минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби минус дробь: чис­ли­тель: i ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
32.  
i

Ука­жи­те ин­тер­ва­лы, удо­вле­тво­ря­ю­щие не­ра­вен­ству: |x в квад­ра­те минус 1| минус 3 боль­ше или равно 0.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая квад­рат­ная скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
33.  
i

Около тре­уголь­ни­ка ABC, с пря­мым утлом C и ги­по­те­ну­зой AB = 13 см, опи­са­на окруж­ность. Най­ди­те все вер­ные утвер­жде­ния.

1) угол C опи­ра­ет­ся на хорду, рав­ную ра­ди­у­су окруж­но­сти
2) сyмма квад­ра­тов сто­рон AC и BC равна 144
3) ги­по­те­ну­за тре­уголь­ни­ка ABC яв­ля­ет­ся диа­мет­ром окруж­но­сти
4) ра­ди­ус окруж­но­сти равен 6,5 см
5) центр окруж­но­сти делит ги­по­те­ну­зу на от­рез­ки 3 см и 10 см
6) ме­ди­а­на, про­ведённая к ги­по­те­ну­зе, яв­ля­ет­ся вы­стой
34.  
i

Вы­чис­ли­те сумму бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии: 0,6; 0,06; 0,006,...

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби
3)  дробь: чис­ли­тель: 8, зна­ме­на­тель: 9 конец дроби
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
35.  
i

Из ко­ну­са вы­ре­за­ли шар наи­боль­ше­го объёма. Най­ди­те от­но­ше­ние объёма сре­зан­ной части ко­ну­са к объёму шара, если осе­вое се­че­ние ко­ну­са — рав­но­сто­рон­ний тре­уголь­ник.

1)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби
2)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 4 конец дроби