Заголовок: Реальная версия ЕНТ по математике 2021 года. Вариант 4270
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЕНТ — математика
Вариант № 26

Реальная версия ЕНТ по математике 2021 года. Вариант 4270

1.  
i

Из 200 шаров — 16 крас­ные. Из всех шаров крас­ные со­став­ля­ют?

1) 16%
2) 18%
3) 6%
4) 12%
5) 8%
2.  
i

Най­ди­те корни урав­не­ния: |2x минус 6| = 10.

1) −10; 4
2) −2; 8
3) −8; 2
4) −2; 6
5) −4; 10
3.  
i

Ре­ши­те си­сте­му урав­не­ний:  си­сте­ма вы­ра­же­ний 16 минус 2x плюс 3 левая круг­лая скоб­ка y плюс 4 пра­вая круг­лая скоб­ка = 17,2 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка минус 2 левая круг­лая скоб­ка y минус 5 пра­вая круг­лая скоб­ка минус 44 = 0. конец си­сте­мы .

1) (55; 33)
2) (−5; 3)
3) (5; 3)
4) (−55; 33)
5) (55; −33)
4.  
i

Ящик с яб­ло­ка­ми раз­де­ли­ли на 4 части про­пор­ци­о­наль­но чис­лам 3; 5; 7; 8. Сколь­ко кг яблок было в ящике, если масса тре­тьей части 21 кг?

1) 40 кг
2) 69 кг
3) 36 кг
4) 38 кг
5) 37 кг
5.  
i

Ре­ши­те не­ра­вен­ство: 3x плюс 5 мень­ше или равно 4x плюс 2.

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 6 плюс 2x боль­ше или равно x минус 2,4x минус 5 мень­ше или равно 7. конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 8; 3 пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус 8; минус 3 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 8; 3 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 8; 3 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
7.  
i

Пер­вый член ариф­ме­ти­че­ской про­грес­сии равен 5, раз­ность про­грес­сии d = −7. Най­ди­те ко­ли­че­ство чле­нов дан­ной ариф­ме­ти­че­ской про­грес­сии, если a_n= минус 163.

1) 36
2) 41
3) 25
4) 30
5) 33
8.  
i

Вы­чис­ли­те ин­те­грал:  ин­те­грал пре­де­лы: от минус 5 до 1, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те dx .

1) 23
2) −10
3) 15
4) 18
5) −15
9.  
i

Внеш­ний угол пра­виль­но­го два­дца­ти­уголь­ни­ка равен?

1) 15°
2) 12°
3) 20°
4) 10°
5) 18°
10.  
i

Из точки к плос­ко­сти про­ве­де­ны пер­пен­ди­ку­ляр и на­клон­на под углом 30° к ее про­ек­ции. Най­ди­те длину на­клон­ной, если длина пер­пен­ди­ку­ля­ра 12 см.

1) 8 см
2) 6 см
3) 24 см
4) 12 см
5) 16 см
11.  
i

Сумма бес­ко­неч­но убы­ва­ю­щей гео­мет­ри­че­ской про­грес­сии равна 32, а сумма ее пер­вых пяти чле­нов равна 31. Най­ди­те пер­вый член про­грес­сии.

1) 32
2) 16
3) 12
4) 24
5) 8
12.  
i

Число n со­став­ля­ет p% от числа a. Число a равно

1) a= дробь: чис­ли­тель: 100 p, зна­ме­на­тель: n конец дроби
2) a= дробь: чис­ли­тель: 100, зна­ме­на­тель: n p конец дроби
3) a= дробь: чис­ли­тель: 100 n, зна­ме­на­тель: 2 p конец дроби
4) a= дробь: чис­ли­тель: 100 p, зна­ме­на­тель: 2 n конец дроби
5) a= дробь: чис­ли­тель: 100 n, зна­ме­на­тель: p конец дроби
13.  
i

Ука­жи­те си­сте­му не­ра­венств, ко­то­рая за­да­ет мно­же­ство точек, по­ка­зан­ных штри­хов­кой (1 клет­ка — 1 еди­ни­ца).

1)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .
2)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 9 конец си­сте­мы .
3)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 4, левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .
4)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше или равно 9 конец си­сте­мы .
5)  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y минус 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 4, левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те плюс левая круг­лая скоб­ка y плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те мень­ше или равно 9 конец си­сте­мы .
14.  
i

По гра­фи­ку най­ди­те мно­же­ство зна­че­ний функ­ции.

1)  левая круг­лая скоб­ка 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 2; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
15.  
i

Ко­си­нус боль­ше­го угла тре­уголь­ни­ка со сто­ро­на­ми 13 см, 14 см, 15 см равен?

1)  дробь: чис­ли­тель: 13, зна­ме­на­тель: 15 конец дроби
2)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 15 конец дроби
3)  дробь: чис­ли­тель: 14, зна­ме­на­тель: 15 конец дроби
4)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 13 конец дроби
5)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 14 конец дроби
16.  
i

Упро­сти­те:

 дробь: чис­ли­тель: левая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка плюс ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в кубе плюс левая круг­лая скоб­ка b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та пра­вая круг­лая скоб­ка в кубе , зна­ме­на­тель: b в сте­пе­ни левая круг­лая скоб­ка 2,4 пра­вая круг­лая скоб­ка плюс 6 конец дроби .

1) b в сте­пе­ни левая круг­лая скоб­ка 2,4 пра­вая круг­лая скоб­ка
2) b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка
3) 2b в сте­пе­ни левая круг­лая скоб­ка 2,4 пра­вая круг­лая скоб­ка
4) 2b в сте­пе­ни левая круг­лая скоб­ка 1,2 пра­вая круг­лая скоб­ка
5) 2b в сте­пе­ни левая круг­лая скоб­ка 2,2 пра­вая круг­лая скоб­ка
17.  
i

Даны век­то­ры \veca левая круг­лая скоб­ка 3;2 пра­вая круг­лая скоб­ка и \vecb левая круг­лая скоб­ка 0; минус 1 пра­вая круг­лая скоб­ка . Най­ди­те аб­со­лют­ную ве­ли­чи­ну век­то­ра  левая круг­лая скоб­ка 5\veca плюс 10\vecb пра­вая круг­лая скоб­ка .

1) 15
2) 13
3) 13
4) 17
5) 6
18.  
i

Ту­рист про­шел 6 км, под­ни­ма­ясь в гору, и 3 км по спус­ку с горы, за­тра­тив на весь путь 2 часа. Ско­рость на спус­ке на 2 км/ч боль­ше ско­ро­сти на подъ­еме. Опре­де­ли­те, сколь­ко вре­ме­ни ту­рист по­тра­тит на об­рат­ный путь, если ско­ро­сти на спус­ке и на подъ­еме оста­нут­ся преж­ни­ми.

1) 1,75 ч
2) 1,6 ч
3) 2 ч
4) 1,25 ч
5) 1,5 ч
19.  
i

Ре­ши­те си­сте­му не­ра­венств:  си­сте­ма вы­ра­же­ний 8 в сте­пе­ни x плюс левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 8 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни x боль­ше 2,2 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка мень­ше или равно 64 умно­жить на 2 в сте­пе­ни x . конец си­сте­мы .

1)  левая круг­лая скоб­ка минус 1; 1 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; 3 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка минус 3; 3 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка минус 2; 0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; 3 пра­вая квад­рат­ная скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1; 1 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
20.  
i

Опре­де­ли­те длину диа­го­на­ли осе­во­го се­че­ния ци­лин­дра с ра­ди­у­сом 5 см и вы­со­той 24 см.

1) 32 см
2) 26 см
3) 30 см
4) 27 см
5) 25 см
21.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Чтобы раз­ре­зать торт про­ве­ли пять диа­мет­ров и по­лу­чи­ли?

1) 12 ку­соч­ков
2) 6 ку­соч­ков
3) 10 ку­соч­ков
4) 9 ку­соч­ков
5) 5 ку­соч­ков
22.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Най­ди­те объём всего торта  левая круг­лая скоб­ка Пи \approx 3 пра­вая круг­лая скоб­ка .

1) 15 500 см3
2) 14 000 см3
3) 13 500 см3
4) 13 000 см3
5) 12 500 см3
23.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Для упа­ков­ки тор­тов фаб­ри­ка из­го­тав­ли­ва­ет ко­роб­ки в виде пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да. Для дан­но­го торта нужно из­го­то­вить ко­роб­ку объём ко­то­рой равен?

1) 1,8 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
2) 1,6 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
3) 1,8 умно­жить на 10 в кубе см в кубе
4) 9 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 4 пра­вая круг­лая скоб­ка см в кубе
5) 1,6 умно­жить на 10 в кубе см в кубе
24.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Торт раз­делён ше­стью диа­мет­ра­ми на ку­соч­ки рав­ной ве­ли­чи­ны. Най­ди­те массу каж­до­го ку­соч­ка, если сред­няя плот­ность торта 0,4 г/см3.

1) 450 г
2) 300 г
3) 250 г
4) 350 г
5) 400 г
25.  
i

Торт в форме ци­лин­дра. Вы­со­та торта 20 см. Диа­метр 30 см. Сред­няя плот­ность торта 0,4 г/см3.

Если  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть торта по­ме­стить в пря­мо­уголь­ный кон­тей­нер раз­ме­ра­ми 12 см × 10 см × 10 см. Какой объём кон­тей­не­ра ока­жет­ся не­за­пол­нен­ным?

1) 70 см3
2) 80 см3
3) 65 см3
4) 85 см3
5) 75 см3
26.  
i

Опре­де­ли­те, каким про­ме­жут­кам при­над­ле­жит зна­че­ние вы­ра­же­ния 2 ко­рень из x плюс 1, x = ло­га­рифм по ос­но­ва­нию 5 625.

1) (1; 7)
2) (−5; 1)
3) (1; 3)
4) (−2; 5)
5) (−3; 0)
6) (0; 4)
7) (4; 10)
8) (3; 8)
27.  
i

Кор­ня­ми урав­не­ния  левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 в сте­пе­ни x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5 в сте­пе­ни x плюс 1 пра­вая круг­лая скоб­ка = 0 яв­ля­ют­ся

1) −5
2) −1
3) 1
4) 3
5) −4
6) 0
7) 5
8) 4
28.  
i

Вы­бе­ри­те из ниже пред­ло­жен­ных от­ве­тов зна­че­ния вы­ра­же­ния  дробь: чис­ли­тель: x, зна­ме­на­тель: y конец дроби , где (xn; yn) — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x плюс y плюс xy = 11,x плюс y плюс 1 = xy. конец си­сте­мы .

1) 4
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 5 конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби
4)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби
5)  минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
6) −2
7)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 конец дроби
8)  дробь: чис­ли­тель: 5, зна­ме­на­тель: 3 конец дроби
29.  
i

К 4% со­ле­во­му рас­тво­ру мас­сой 250 г до­ба­ви­ли соль и по­лу­чи­ли 20% рас­твор. Масса до­бав­лен­ной соли равна

1) 40 г
2) 0,04 кг
3) 20 г
4) 0,05 кг
5) 50 г
6) 30 г
7) 0,02 кг
8) 0,03 кг
30.  
i

Ре­ше­ни­ем не­ра­вен­ства 13x минус 15 мень­ше или равно 2x в квад­ра­те яв­ля­ет­ся про­ме­жу­ток?

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; 5 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби ; 5 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 5 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
31.  
i

Най­ди­те чис­ло­вые про­ме­жут­ки, ко­то­рым при­над­ле­жит зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: x конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: y конец дроби пра­вая круг­лая скоб­ка , где (x; y) — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x минус y = 4,3 в сте­пе­ни x умно­жить на 3 в сте­пе­ни y = 27. конец си­сте­мы .

1)  левая круг­лая скоб­ка 2 ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби ; дробь: чис­ли­тель: 7, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус 3 ; 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус 0,5 ; 2 пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус 1 ; 2 пра­вая круг­лая скоб­ка
6)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 2 пра­вая квад­рат­ная скоб­ка
7)  левая квад­рат­ная скоб­ка минус 2 ; 2 пра­вая квад­рат­ная скоб­ка
8)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 2 пра­вая круг­лая скоб­ка
32.  
i

Упро­сти­те: | ко­рень из 7 плюс ко­рень из 5 минус 4| плюс | ко­рень из 7 плюс ко­рень из 5 минус 5|.

1) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 1
2) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
3) 1
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та плюс 1
5) 2
6) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 1
7) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та плюс 1
8) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та минус 1
33.  
i

Одна из диа­го­на­лей па­рал­ле­ло­грам­ма пер­пен­ди­ку­ляр­на сто­ро­не. Най­ди­те эту диа­го­наль и пло­щадь па­рал­ле­ло­грам­ма, если его пе­ри­метр равен 16 см, а раз­ность смеж­ных сто­рон равна 2 см.

1) 36 см2
2) 80 см2
3) 13 см
4) 5 см
5) 4 см
6) 12 см
7) 12 см2
8) 6 см2
34.  
i

Ма­те­ри­аль­ная точка дви­жет­ся со ско­ро­стью  v левая круг­лая скоб­ка t пра­вая круг­лая скоб­ка = 1 минус 2 синус в квад­ра­те t. Най­ди­те ин­тер­вал, в ко­то­рый вхо­дит зна­че­ние пути, прой­ден­но­го ма­те­ри­аль­ной точ­кой за про­ме­жу­ток вре­ме­ни от t = 0 до t = 0,25 Пи .

1)  левая квад­рат­ная скоб­ка 1; 1,5 пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 1; минус 0,5 пра­вая квад­рат­ная скоб­ка
3)  левая квад­рат­ная скоб­ка минус 1; 0 пра­вая квад­рат­ная скоб­ка
4)  левая круг­лая скоб­ка минус 0,75; 0,75 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка минус 1; минус 0,25 пра­вая квад­рат­ная скоб­ка
6)  левая квад­рат­ная скоб­ка 0; 1,5 пра­вая круг­лая скоб­ка
7)  левая круг­лая скоб­ка 0,5; 1 пра­вая круг­лая скоб­ка
8)  левая круг­лая скоб­ка 0,5; 1,25 пра­вая квад­рат­ная скоб­ка
35.  
i

Точка A — центр шара. По дан­ным ри­сун­ка най­ди­те пло­щадь сфе­ри­че­ской части мень­ше­го ша­ро­во­го сег­мен­та.

1) 306 Пи
2)  дробь: чис­ли­тель: 200, зна­ме­на­тель: 3 конец дроби Пи
3)  дробь: чис­ли­тель: 500, зна­ме­на­тель: 3 конец дроби Пи
4) 208 Пи
5)  дробь: чис­ли­тель: 100, зна­ме­на­тель: 3 конец дроби Пи
6) 108 Пи
7) 250 Пи
8) 100 Пи