Детское ведерко имеет форму усеченного конуса с диаметрами основании 10 см и 34 см (нижнее основание меньше верхнего), образующей 13 см.
Объем ведерки равен
Площади оснований равны 25π и по формуле объема усеченного конуса объем равен
Правильный ответ указан под номером 3.
Комментарий.
Если использовать более точное значение первый ответ будет наиболее близок к правильному, равному ≈ 2089.


Если то площадь нижнего основания равна
Площадь круга радиусом равна
Правильный ответ указан под номером 3.


Во сколько раз радиус верхнего основания больше, чем радиус нижнего основания
Радиус верхнего основания равен что в
раза больше радиуса нижнего основания.
Правильный ответ указан под номером 4.


Высота ведерка равна
Рассмотрим прямоугольную трапецию O1O2BA и опустим высоту AH. Тогда
и по теореме Пифагора
Правильный ответ указан под номером 1.


Объем ведерки равен
Найдем высоту ведерка. Рассмотрим прямоугольную трапецию O1O2BA и опустим высоту AH. Тогда
и по теореме Пифагора
Площади оснований равны 25π и по формуле объема усеченного конуса объем равен
Правильный ответ указан под номером 3.
Комментарий.
Если использовать более точное значение первый ответ будет наиболее близок к правильному, равному ≈ 2089.


Определите, сколько нужно краски для покрытия внешней поверхности ведерки (включая дно), если на 1 дм2 расходуется 150 г краски
Достроим мысленно усеченный конус до полного с вершиной S. Тогда треугольники SO1A и SO2B будут подобны с коэффициентом 5 : 17. Пусть
тогда
и
откуда
Площадь поверхности полного конуса равна площадь достроенной части
площадь дна 25π. Значит, общая площадь ведерка составляет
квадратных сантиметра. Поскольку на 100 квадратных сантиметров нужно 150 граммов краски, на каждый квадратный сантиметр нужно грамма краски и на все ведерко
граммов.
Правильный ответ указан под номером 1.
Комментарий.
Если использовать более точное значение π, первый ответ все равно наиболее близок к правильному ≈ 1465,5 граммов.


Если то площадь нижнего основания равна
Площадь круга радиусом равна
Правильный ответ указан под номером 3.
Во сколько раз радиус верхнего основания больше, чем радиус нижнего основания
Радиус верхнего основания равен что в
раза больше радиуса нижнего основания.
Правильный ответ указан под номером 4.
Высота ведерка равна
Рассмотрим прямоугольную трапецию O1O2BA и опустим высоту AH. Тогда
и по теореме Пифагора
Правильный ответ указан под номером 1.
Определите, сколько нужно краски для покрытия внешней поверхности ведерки (включая дно), если на 1 дм2 расходуется 150 г краски
Достроим мысленно усеченный конус до полного с вершиной S. Тогда треугольники SO1A и SO2B будут подобны с коэффициентом 5 : 17. Пусть
тогда
и
откуда
Площадь поверхности полного конуса равна площадь достроенной части
площадь дна 25π. Значит, общая площадь ведерка составляет
квадратных сантиметра. Поскольку на 100 квадратных сантиметров нужно 150 граммов краски, на каждый квадратный сантиметр нужно грамма краски и на все ведерко
граммов.
Правильный ответ указан под номером 1.
Комментарий.
Если использовать более точное значение π, первый ответ все равно наиболее близок к правильному ≈ 1465,5 граммов.
Наверх