Демонстрационная версия ЕНТ-2023 по математике. Вариант 2.

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Верным разложением числа 660 на простые множители является:

1) $2 \cdot 5 \cdot 6 \cdot 11$ 2) $2^2 \cdot 3 \cdot 5 \cdot 11$ 3) $2^3 \cdot 5 \cdot 11$ 4) $2 \cdot 3 \cdot 5 \cdot 11$

2. Вычислите: $i^{24} + i^{25} + i^{26}$.

1) -i 2) 1 3) i 4) -1

3. Найдите значение выражения $m=\left|\frac{1}{2}-1\frac{1}{3}\right|$ и выберите верное неравенство среди предложенных 1) m<-1 2) 0< m<1 3) m<0 4) m>1

 $\textbf{4.} \ \ \text{Найдите значение выражения:} \ \ \sin\left(\arcsin\frac{\sqrt{3}}{2}\right) + \arccos\left(-\frac{1}{2}\right) + \arctan\sqrt{3} - \pi.$

1) $-\frac{\pi}{2}$ 2) π 3) $-\frac{\sqrt{3}}{2}$ 4) $\frac{\sqrt{3}}{2}$

5. Данное выражение -(3,5x-y)+3(-2y+0,5x) имеет стандартный вид

1) 2x-5y 2) -2x-5y 3) 2x+5y 4) -2x-7y

6. Выберите уравнение, которое является квадратным уравнением с одной переменной

1) $5x+3x^2=8$ 2) $5x^4+3x^2-18=0$ 3) $1,5x^2-8+25y^2=0$ 4) 2x+15=0

7. Найдите (x - y), если пара чисел (x; y) является решением системы уравнений: $\begin{cases} x^2y = 25, \\ xy^2 = 5. \end{cases}$

1) 4 2) -5 3) -4 4) 5

8. Вычислите: $\lim_{r \to 3} \frac{3x^2 - 27}{r - 3}$

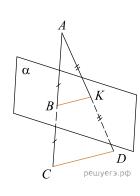
1) 18

2) 0

4) 6

9. Сколько сторон имеет правильный многоугольник, если градусная мера его внутреннего угла равна 160°?

1) 36


2) 12

3) 24

3)9

4) 18

10. Определите по рисунку длину отрезка BK, если CD = 5.8 см.

1) 3,2 cm 2) 2,9 cm 3) 2,6 cm 4) 5,2 cm

11. Решите уравнение: $\arcsin x = \cos \frac{\pi}{3}$

1) $\frac{2\pi}{3}$ 2) $\frac{\pi}{2}$ 3) $\sin \frac{1}{2}$ 4) $\frac{\pi}{6}$

12. Решите неравенство: $(x-4)^2(3-x)(5x+10) \ge 0$

2)
$$[-2; 3] \cup [3; 4]$$

енство:
$$(x-4)^2(3-x)(5x+10) \ge 0$$

1) $[-2; +\infty)$ 2) $[-2; 3] \cup [3; 4]$ 3) $(-\infty; -2] \cup [3; +\infty)$ 4) $[-2; 3]$ и {4}

13. Вычислите интеграл: $S = \int_{0}^{\frac{\pi}{4}} (\sin 3x \cos 2x - \cos 3x \sin 2x) dx$

1)
$$\frac{\sqrt{3}}{2}$$

1)
$$\frac{\sqrt{3}}{2}$$
 2) 0,5 3) 1 4) $-\frac{\sqrt{2}}{2} + 1$

14. Дан закон распределения случайной величины

x_i	5	7	12	18
p_i	0,2	p_2	0,4	0,3

Определите вероятность появления события $x_2 = 7$.

15. Сумма двух сторон треугольника равна 18 см, а третью сторону его биссектриса делит на отрезки 4 см и 5 см. Наименьшая сторона треугольника равна

16. Найдите угол между прямыми, заданными параметрически

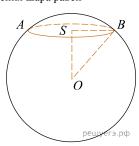
$$\begin{cases} x = 2t + 1, \\ y = t, \\ z = -t - 1 \end{cases} \quad \text{if} \quad \begin{cases} x = t + 2, \\ y = -2t + 1, \\ z = 1 \end{cases}$$

17. Решите уравнение: $4^{\log_8(2x-2)} \cdot 2^{-\log_2 \sqrt[3]{2x-2}} = 2\sqrt[3]{2}$.

18. Найдите число A, если $A = x_1 + x_2 + y_1 + y_2$, где $\{(x_1; y_1); (x_2; y_2)\}$ являются решением системы уравнений: $\int \sin^2 x + \cos y = 1,$ $\int \cos^2 x + \cos y = 1.$ $\cos^{2} x + \cos y = 1.$ 1) $\frac{\pi}{2} + 2\pi n + 4\pi k, n, k \in \mathbb{Z}$ 2) $1 + 4\pi n + 4\pi k, n, k \in \mathbb{Z}$ 3) $\frac{\pi}{2} + \pi n + 4\pi k, n, k \in \mathbb{Z}$ 4) $1 + 2\pi n + 2\pi k, n, k \in \mathbb{Z}$

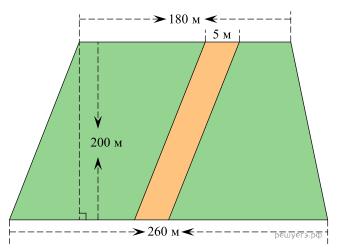
1)
$$\frac{\pi}{2} + 2\pi n + 4\pi k, n, k \in \mathbb{Z}$$

2)
$$1 + 4\pi n + 4\pi k, n, k \in \mathbb{Z}$$


3)
$$\frac{\pi}{2} + \pi n + 4\pi k, n, k \in \mathbb{Z}$$

4)
$$1 + 2\pi n + 2\pi k, n, k \in \mathbb{Z}$$

19. Вычислите значение суммы целых чисел, удовлетворяющих системе неравенств: $\begin{cases} 2x + 5 < 3, \\ x^2 - 5x \leqslant 24. \end{cases}$


$$1) -4$$

20. Расстояние от центра шара до плоскости сечения равно $5\sqrt{3}$. Радиус шара 10, тогда радиус сечения шара равен

2) 5 3)
$$3\sqrt{3}$$

На рисунке изображен огород трапециевидной формы засеянный овощами (верхнее основание трапеции равно 180 м, нижнее основание равно 260 м, высота равна 200 м) и дорога в виде параллелограмма шириной 5 м, проходящая через огород.

21. Площадь дороги равна

- 1) 1000 m^2
- 2) 1200 m^2
- 3) 1500 m^2
- 4) 900 m^2

22. Общая площадь огорода и дороги равна

- 1) 13000 m^2

- 2) 50000 m^2 3) 44000 m^2 4) 90000 m^2

23. Площадь огорода, засаженная овощами, равна

- 1) 43000 m^2
- 2) 49000 m^2 3) 89000 m^2 4) 11800 m^2

24. В целях расширения огорода все его размеры увеличили в два раза. Найдите площадь нового огорода вместе с дорогой.

- 1) 186000 m^2
- 2) 106000 m^2
- $3) 276000 \text{ m}^2$
- 4) 176000 m^2

25. Напишите формулу вычисления общей площади огорода S(x) включая дорогу, если в целях расширения огорода все его размеры увеличили на х метров.

1)
$$S(x) = x^2 + 420x + 44000$$

2)
$$S(x) = x^2 + 420x - 44000$$
 3) $S(x) = x^2 + 420x + 54000$

3)
$$S(x) = x^2 + 420x + 54000$$

4)
$$S(x) = x^2 + 440x + 164000$$

26. Из предложенных вариантов подберите натуральное число x так, чтобы значение суммы 758 + x делилось на 9 без остатка.

- 1)6
- 2) 7
- 4) 5
- 5) 15
- 6) 14

27. Значение выражения $\arccos\left(-\frac{1}{2}\right)$ равно

1)
$$\frac{\pi}{2}$$

1)
$$\frac{\pi}{4}$$
 2) $-\frac{\pi}{3}$ 3) $\frac{2\pi}{3}$ 4) $\frac{\pi}{3}$ 5) $-\frac{\pi}{4}$ 6) $-\frac{2\pi}{3}$

3)
$$\frac{2\pi}{3}$$

3) 16

4)
$$\frac{\pi}{2}$$

28. Из ниже перечисленных ответов выберите те, которые равны остатку от деления многочлена $x^2 - 3x + 5$ на двучлен x - 1.

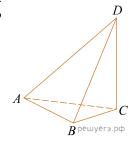
1)
$$\left(\frac{1}{3}\right)^{-1}$$
 2) 2 3) 1 4) $\left(\frac{1}{2}\right)^{-1}$ 5) $\left(\frac{1}{9}\right)^{-\frac{1}{2}}$ 6) 3

4)
$$\left(\frac{1}{2}\right)^{\frac{1}{2}}$$

29. Вычислите: $\lim_{x \to 2} \frac{4x^2 - 2x + 5}{x + 1}$

1) $6\frac{1}{3}$ 2) $\frac{19}{3}$ 3) $\frac{7}{3}$ 4) $2\frac{1}{3}$ 5) $\frac{17}{3}$ 6) $5\frac{2}{3}$

30. Даны точка A (3; 5; -1) и точка B (-2; 4; -3). Найдите длину вектора $A\dot{B}$.


- 1) $\sqrt{30}$ 2) $\sqrt{31}$ 3) $\sqrt{120}$ 4) $\sqrt{5}$ 5) $\sqrt{10}$ 6) $6\sqrt{6}$

31. Числа $z = \sqrt{3}x + 5i$ и $\vec{z} = \sqrt{27} + yi$ взаимно сопряженные. Найдите числовые промежутки, которым принадлежат значения чисел х и у.

- 1) $[-5; +\infty;)$ 2) [-5; 3] 3) $[4; +\infty)$ 4) $(-\infty; -5)$ 5) (-5; 3) 6) $(-\infty; 4)$

32. Решите уравнение $5^{x-3} - 5^{x-4} = 16 \cdot 5^{x-5} + 4$. Выберите промежутки, в которые входит решение данного уравнения.

- 1) (-10; 0] 2) [0; 5) 3) (0,75; 7] 4) (0; 5] 5) $[0; +\infty;)$ 6) [-400; -10]
- 33. Отрезок DC перпендикулярен плоскости прямоугольного треугольника ABC, $\angle B = 90^{\circ}$. Треугольник АСО равнобедренный. Из перечисленных ниже ответов найдите те, которые равны значению синус угла между плоскостью *ADB* и *ABC*, если $AD = 5\sqrt{2}$, AB = 3.

- 1) $\frac{5\sqrt{41}}{41}$ 2) $\frac{5}{41}$ 3) $\frac{5}{\sqrt{41}}$ 4) $\frac{\sqrt{41}}{41}$ 5) $\left(\frac{\sqrt{41}}{5}\right)^{-1}$ 6) $\frac{5\sqrt{5}}{41}$
- 34. Тело, падая с некоторой высоты, проходит в первую секунду 4,5 м, а каждую следующую на 5,8 м больше. С какой высоты упало тело, если падение продолжалось 11 с?

- 1) $72\frac{1}{2}$ M 2) $62\frac{1}{2}$ M 3) 343,75 M 4) 72,5 M 5) $368\frac{1}{2}$ M 6) 368,5 M

35. Найдите синус и косинус угла, изображенного на рисунке.

- 1) $\frac{2}{5}$ 2) $\frac{2\sqrt{5}}{5}$ 3) $\frac{3\sqrt{5}}{5}$ 4) $\frac{\sqrt{5}}{5}$ 5) $\frac{\sqrt{5}}{3}$ 6) $\frac{1}{5}$