Демонстрационная версия ЕНТ-2025

При выполнении заданий с выбором ответа отметьте верные ответы.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Вычислите: $10\sqrt{3} - \sqrt{48} - \sqrt{75}$.

1)
$$3\sqrt{3}$$
 2) $-\sqrt{3}$ 3) $\sqrt{3}$ 4) $-3\sqrt{3}$

2. Упростите выражение: $\frac{a^2 \cdot a^{-9}}{(a^{-3})^4}$.

1)
$$\frac{1}{a^6}$$
 2) $\frac{1}{a^5}$ 3) a^5 4) a

3. Упростите выражение: $\frac{\cos 36^{\circ} + \sin^2 18^{\circ}}{\cos^2 18^{\circ}} - 1$.

1) 1 2)
$$\cos^2 18^\circ$$
 3) 0 4) $\cos 18^\circ$

4. Определите степень многочлена: $7x^4y^5 + 3y^6 - 5xy^7 - 2$.

5. Решите уравнение: $\frac{2}{3}y - \frac{1}{3} = \frac{5}{9}y$.

6. Решите систему уравнений:

$$\begin{cases} 3x - 8y = -43, \\ 4x + y = -34. \end{cases}$$
1) (-9; 2) 2) (-8; -4) 3) (-5; 3) 4) (7; -5)

7. Найдите интеграл: $\int \frac{1}{x-3} dx$.

1)
$$-\frac{1}{3}\ln|x-3|+C$$
 2) $-3\ln|x-3|+C$ 3) $3\ln|x-3|+C$ 4) $\ln|x-3|+C$

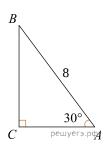
8. Радиус конуса увеличили в три раза. Во сколько раз увеличился объем конуса?

9. Найдите наибольшее целое решение системы неравенств

$$\begin{cases} |x+5| < 10, \\ \frac{x^2 - 4x + 3}{x^2 - 9} > 1. \end{cases}$$
1) 3 2) -1 3) -4 4) 5

10. Решите уравнение: $\sin 2x \cdot \cos 2x = -\frac{1}{2}$.

1)
$$-\frac{\pi}{8} + \frac{\pi k}{2}$$
, $k \in \mathbb{Z}$ 2) $\frac{\pi}{8} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$ 3) $-\frac{\pi}{4} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$ 4) $-\frac{\pi}{8} + \pi k$, $k \in \mathbb{Z}$


11. Найдите значение производной функции $y = x^2 + \sqrt{2x+5} - \sqrt{7}$ в точке $x_0 = -2$.

1) 3 2)
$$-3$$
 3) 4 4) -4

12. Решите неравенство: $\frac{4}{2x-9} > 0$.

1)
$$(-4, 4)$$
 2) $(-4, 5, +\infty)$ 3) $(-\infty, 4, 5)$ 4) $(4, 5, +\infty)$

13. Используя чертеж, вычислите площадь треугольника АВС.

- 1) $12\sqrt{3}$ 2) 12 3) $8\sqrt{3}$ 4) 8
- **14.** Найдите: $\int (e^x + 2^x + 1) dx$.

1)
$$\frac{e^x}{\ln 2} + 2^x + x + C$$
 2) $e^x + 2^x \ln 2 + x + C$ 3) $e^x + \frac{2^x}{\ln 2} + x + C$ 4) $e^x + 2^x + x + C$

15. Образующая конуса равна 2 и составляет с плоскостью основания угол 30°. Найдите площадь основания конуса.

1)
$$3\pi$$
 2) $\frac{\pi}{2}$ 3) 2π 4) π

16. Решите уравнение: $\log_2(x+1) + \log_2(x+2) = 1$.

$$1)-4$$
, 1 $2)-3$ $3)$ 1 $4)$ $($

17. Решите систему уравнений:

$$\begin{cases} \log_4 x + \log_4 y = 1, \\ y + 2x = 9. \end{cases}$$

1)
$$(0,5;8),(4;1)$$
 2) $(5;4),(4;5)$ 3) $(\frac{1}{2};1),(-1;0)$ 4) $(0,5;4),(8;1)$

18. Найдите площадь фигуры, ограниченной графиком функции $y = x^2 - 4x + 4$ и графиком ее производной.

1)
$$1\frac{1}{3}$$
 кв. ед. 2) $2\frac{1}{3}$ кв. ед. 3) $1\frac{2}{3}$ кв. ед. 4) $2\frac{2}{3}$ кв. ед.

2)
$$2\frac{1}{3}$$
 кв. ед.

3)
$$1\frac{2}{3}$$
 кв. ед

4)
$$2\frac{2}{3}$$
 кв. ед.

19. Основания равнобедренной трапеции 20 см и 12 см, а острый угол равен 45°. Найдите площадь трапеции.

1)
$$68 \text{ cm}^2$$

1)
$$68 \text{ cm}^2$$
 2) 48 cm^2 3) 64 cm^2 4) 32 cm^2

3)
$$64 \text{ cm}^2$$

$$4).32 \text{ cm}^2$$

20. Арифметическая прогрессия 6, 8, 10... и геометрическая прогрессия 1, 2, 4... имеют по 61 члену. Сколько одинаковых членов в обеих прогрессиях?

21. Если $\vec{a}(-3;1), \vec{b}(-1;2),$ то длина вектора $\vec{c}=-2\vec{a}+4\vec{b}$ равна

1)
$$4\sqrt{2}$$
 2) $3\sqrt{15}$ 3) $6\sqrt{7}$ 4) $2\sqrt{10}$

2)
$$3\sqrt{15}$$

3)
$$6\sqrt{7}$$

4)
$$2\sqrt{10}$$

22. Найдите значение выражения $\frac{x^2 - y}{x - 7} - x + \frac{6x}{7 - x}$ при x = 1, y = -2.

1)
$$-\frac{2}{3}$$
 2) $-\frac{1}{2}$ 3) $\frac{1}{2}$ 4) $-\frac{1}{3}$

23. Укажите произведение корней уравнения: $x^{\log_7 x + 1} = 5^{\log_5 49}$

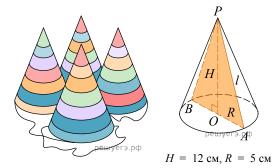
1)
$$\frac{1}{49}$$
 2) $\frac{1}{7}$ 3) $\frac{5}{7}$ 4) $\frac{7}{25}$

24. Решите неравенство: $\sqrt{2+x} \cdot \sqrt{2-x} < 0$.

1)
$$(-1; -0]$$
 2) $[0; 1]$ 3) нет решений

25. Напишите уравнение касательной в графику функции $y = 2x^2 - x + 3$ в точке $x_0 = 1$.

1)
$$v = 1 + 2x$$


2)
$$y = 1 - 3x$$

1)
$$y = 1 + 2x$$
 2) $y = 1 - 3x$ 3) $y = -1 - 3x$ 4) $y = 3x + 1$

4)
$$y = 3x + 1$$

Конус

Слово «конус» греческого происхождения и означает — «сосновая шишка».

Артем на свой день рождения решил пригласить школьных друзей: Аружан, Айшу, Данила и Мираса. Приготовил для себя и своих гостей конусообразный праздничный головной убор — колпак (для приготовления одного колпака понадобится: 1 лист бумаги формата A4 (29,7 × 21 см), резинку длиной 8 см и ленты разных цветов).

- **26.** Найдите площадь основания конуса ($\pi \approx 3$).
 - 1) 70 cm^2
 - 2) 65 cm^2 3) 72 cm^2 4) 75 cm^2
- **27.** Найдите площадь боковой поверхности конуса ($\pi \approx 3$).
 - $1) 200 \text{ cm}^2$
- 2) 205 cm^2
- $3) 190 \text{ cm}^2$
- 4) 195 cm^2
- 28. На сколько увеличится боковая поверхность колпака, если высоту и радиус основания увеличить на 3 см?
 - 1) $72\pi \text{ cm}^2$
- 2) $71\pi \text{ cm}^2$
- $3) 70\pi \text{ cm}^2$
- 4) $69\pi \text{ cm}^2$
- **29.** Найдите, сколько нужно ленты, чтобы обвить края всех колпаков блестящей лентой шириной 1 см ($\pi \approx 3$).
 - 1) 110 см
- 2) 150 cm
- 3) 100 см
- 4) 130 см
- **30.** Если стакан и праздничный колпак имеют одинаковые объемы, то сколько бы поместилось сока в стакан ($\pi \approx 3$)?
 - $1)\,300\,\mathrm{cm}^3$
- $2) 280 \text{ cm}^3$
- $3) 200 \text{ cm}^3$
- 4) 250 cm^3
- **31.** Квадратичная функция задана в виде $y = (x-2)^2 1$. Установите соответствия между координатами вершины параболы, нулями функции и их значениями.
 - А) нули функции
 - Б) координаты вершины параболы

- 1) (-2; -1)
- 2) {1; 3}
- 3) (2; -1)
- 4) {1; 2}
- 32. Дана равнобокая трапеция, описанная около окружности с радиусом 6. Боковая сторона трапеции равна 13. Установите соответствие между значениями средней линии, высоты трапеции и промежутками, которым они принадлежат.
 - А) средняя линия трапеции

1) [7; 12]

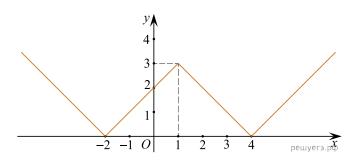
Б) высота трапеции

- 2) [6; 10]
- 3) (14; 16] 4) (12; 18)
- 33. Найдите два натуральных числа n и m, n > m, отношение которых равно 3, а отношение суммы их квадратов к их сумме
 - A) число n принадлежит промежутку

равно 5. Установите соответствие между приведенными ниже данными.

1) [0; 2]

Б) число т принадлежит промежутку


- 2) (2;4)3) (4; 6)
- 4) (4; 8)

34. При помощи графика функции y = ||x-1|-3| выясните, сколько решений имеет уравнение ||x-1|-3| = a в зависимости от значений параметра а. Установите соответствие между значениями параметра а и количеством решений уравнения.

2) 4 3) 3

4) 1

35. Дана геометрическая прогрессия (b_n), где $b_3 = 10$ и $b_6 = 80$. Установите соответствие между выражением и его числовым значением.

1) 67,5 2) 57,5 3) 47,5 4) 77,5

36. Выберите все промежутки, которым принадлежит значение выражения 3(2, 1x+1) - (1, 5-4x) - 6, 2 при x=1.

2) (6; 9)

3) [5; 9)

4) (2;7] 5) (4;7] 6) (-1;4)

37. Из перечисленных ниже ответов найдите те, которые равны значению выражения: $\sin 30^{\circ} - 3 \operatorname{tg} \frac{\pi}{4}$.

1) -2,5 2) -2 $\frac{1}{2}$ 3) 2 $\frac{1}{2}$ 4) $\frac{3}{2}$ 5) - $\frac{5}{2}$ 6) $\frac{5}{2}$

6) 2

38. Сумма трех данных чисел, составляющих арифметическую прогрессию, у которой разность больше нуля, равна 15. Если к этим числам прибавить соответственно 1, 4 и 19, то полученные числа составляют первые три члена геометрической прогрессии. Данные три числа равны

3)7

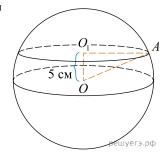
4) 1 5) 3

39. Если пара чисел $(x_0; y_0)$ решение системы уравнений

$$\begin{cases} \log_5(y-x) = 1, \\ 5^{x+1} \cdot 2^y = 16, \end{cases}$$

то значение выражения $3x_0 + y_0^2$ равно

1)
$$\sqrt{169}$$


2) 11

3) 19 4) $\sqrt{361}$

5) 13

6) $\sqrt{121}$

40. В сфере, площадь поверхности которой равна 2028 см² (принять $\pi \approx 3$), на расстоянии OO_1 от ее центра проведено сечение. Значение площади этого сечения имеет делители

1) 22

2) 16

3)3

4) 14

5)5

6) 36